(3.238.173.209) 您好!臺灣時間:2021/05/16 04:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林裕森
研究生(外文):Yu-Sen Lin
論文名稱:人工智能輔助量測優化低溫共燒陶瓷加工製程研究
論文名稱(外文):Research on Artificial Intelligence Assisted Measurement and Optimization of Low-Temperature Co-Fired Ceramic Processing Process
指導教授:張榮森張榮森引用關係
學位類別:碩士
校院名稱:國立中央大學
系所名稱:光電科學與工程學系
學門:工程學門
學類:電資工程學類
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:56
中文關鍵詞:人工智能低溫共燒陶瓷自動光學量測QC
外文關鍵詞:artificial intelligencelow temperature co-fired ceramicsautomatic optical measurementQC
相關次數:
  • 被引用被引用:0
  • 點閱點閱:27
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著人工智能、網路科技的蓬勃發展以及5G射頻技術模組的需求下,硬體材料的LTCC低溫共燒陶瓷基板材料被推向歷史的高點。在小型化需 求下散熱及加工精度問題備受重視;陶瓷燒結後的硬度僅次於鑽石,所以後加工成本高昂,而燒結前的生胚則如粉筆、麵皮,所以陶瓷加工多採兩段式,生胚時做量大的粗加工,燒結後做精密加工;然而燒結後的收縮量造成極大的不確定性,致使燒結前加工精度在燒結後變得難以控制、再加上層間金屬電路的影響造成不均勻收縮,對尺寸精準度是一大考驗。
本論文提出在LTCC製程在生胚加工到燒結收縮後精度控制方法,整合自動光學量測、AI自動定位辨識,快速掌握QC結果,及時修正加工參數,透過深度學習原理,可以達成下列目標:
(1)可在同一批料即可快速比對燒結前、後尺寸收縮率誤差,及時修正生胚加工的參數設定,及時補償的概念,使最後目標尺寸中心點偏移縮小。
(2)從完工後汰除不良品的方式,進步到預測公差範圍,在超過公差前即提出暫停訊號,可使良率提升至4~5%以上,向100%目標逼近。
(3)相關連的任兩站,每一後工作站量測資訊立即回覆給前一站,透過深度學習,除即時優化精準度,更建立了完整資料庫,生產樣本越多可靠度越高,對於產品設計的優化、進料檢驗或製程改善都提供很好的工具。
With the vigorous development of artificial intelligence, network technology and the demand for 5G RF technology modules, the LTCC low-temperature co-fired ceramic substrate material of hard materials has been pushed to a historical high. Under the requirement of miniaturization, heat dissipation and processing accuracy are highly valued; the hardness of ceramics after sintering is second only to diamonds, so the cost of post-processing is high, and the green embryos before sintering are like chalk and dough, so ceramic processing is usually two-stage. , Rough machining with a large amount of raw embryos and precision machining after sintering; however, the shrinkage after sintering causes great uncertainty, so that the processing accuracy before sintering becomes difficult to control after sintering, plus the interlayer metal circuit The effect causes uneven shrinkage, which is a test of dimensional accuracy.
This paper proposes a precision control method from green embryo processing to sinter shrinkage in the LTCC process, integrating automatic optical measurement and AI automatic positioning identification, quickly grasping QC results, and timely correcting processing parameters. Through deep learning principles, the following goals can be achieved:
(1)The size shrinkage error before and after sintering can be quickly compared in the same batch of materials, the parameter setting of green embryo processing can be corrected in time, and the concept of timely compensation can reduce the center point deviation of the final target size.
(2)From the method of eliminating defective products after completion, to the predicted tolerance range, the suspension signal is raised before the tolerance is exceeded, which can improve the yield to more than 4~5% and approach the 100% target.
(3)For any two related stations, the measurement information of each back station is immediately returned to the previous station, through the depth Learning, in addition to real-time optimization accuracy, a complete database has been established. The more production samples, the higher the reliability. It provides good tools for product design optimization, incoming inspection or process improvement.
摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 v
表目錄 vi
第一章 緒論
1.1 前言 1
1.2 研究動機 1
1.3 研究目的 2
1.4 研究貢獻 2
第二章 LTCC製程與QC技術
2.1 低溫共燒陶瓷簡介 3
2.2 自動光學檢測簡介 11
2.3 人工智能簡介 15
第三章 研究方法與使用設備
3.1 研究方法 17
3.2 使用設備 23
第四章 實驗結果分析
4.1 結果分析 27
第五章 結論與未來展望
5.1 結論 30
5.2 未來展望 30
參考文獻 31
附錄A SCI預投期刊初稿(中文版) 32
附錄B SCI預投期刊初稿(英文版) 38
【1】楊旻諭、劉坤儒、許志雄、賴冠廷,氮化鋁刮刀成型技術與薄
帶生胚特性研究,P90-P91,2015.12.
【2】中華科技大學學報,吳玉祥、詹宜軒、林博文,刮刀成型法之
碳化矽厚薄板生產技術開發研究,P3-P5,20150421
【3】陳必軒,創新高精度印刷之微鋼版結構設計暨製程開發技術,
P2-P7、P13、P46,2014.07.
【4】武漢坤元流延科技網頁,溫等靜壓機,瀏覽日2020/05/09,檢自
http://kylysb.com/cont/155.html
【5】百度百科網頁,低溫共燒陶瓷技術,瀏覽日2020/05/09,檢自
https://baike.baidu.com/item/低温共烧陶瓷技术
【6】kknews網頁,盧榮勝,3分鐘了解自動光學檢測(AOI)技術,
瀏覽日2020/05/10,檢自https://kknews.cc/news/5z6v528.html
【7】張晴晴,側照式SMD-LED瑕疵自動光學檢測系統,P7-P9,2010.06.
【8】林義祥,機器視覺應用於照相手機鏡片模組邊緣瑕疵檢測,
P9,2012.06.
【9】張國政,CMOS Sensor自動光學檢測機台之設計及開發,
P16-P17、 P20,2006.01.
【10】kknews網頁,物方遠心鏡頭及像方遠心鏡頭介紹,瀏覽日
2020/05/16,檢自 https://kknews.cc/zh-tw/digital/88ploq.html
【11】kknews網頁,遠心平行光源的研發與應用,瀏覽日2020/05/16,
檢自 https://kknews.cc/news/ogoyeoo.html
【12】台灣電子協會網頁,面對AI化的AOI檢測設備現況與未來發展
研討會,瀏覽日2020/05/17,檢自
https://www.teeia.org.tw/zh-tw/Course/108082801/36
【13】康耐視部落格網頁,運用AI、機器學習及深度學習進行工業自
動化檢測,各有何差異呢?,瀏覽日2020/05/23,檢自
https://www.cognex.com/zh-tw/blogs/deep-learning/ai-
versus-deep-learning-
versus-machine-learning-in-industrial-automation
【14】蘇俊銘,基於卷積神經網路之非平衡式陶瓷基板瑕疵檢測模
型,P10-P13、P32,2018.07
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文