(3.238.173.209) 您好!臺灣時間:2021/05/16 21:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:曹瑋辰
研究生(外文):Wei-Chen Tsao
論文名稱:潛望鏡式三倍變焦之八百萬畫素鏡頭深度在5mm以內及五百萬畫素鏡頭深度在4 mm以內之手機鏡頭設計
指導教授:孫文信
指導教授(外文):Wen-Shing Sun
學位類別:碩士
校院名稱:國立中央大學
系所名稱:光電科學與工程學系
學門:工程學門
學類:電資工程學類
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:76
中文關鍵詞:潛望鏡式光學變焦鏡頭直角稜鏡
外文關鍵詞:Periscope typeOptical zoom lensRight angle prism
相關次數:
  • 被引用被引用:0
  • 點閱點閱:49
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
本研究提出八百萬畫素及五百萬畫素潛望鏡式三倍變焦鏡頭設計,潛望鏡式變焦鏡頭為在一變焦鏡頭組的前方放置一片直角稜鏡,將光路前進方向旋轉九十度。以下為八百萬畫素三倍變焦鏡頭之設計規格,有效焦距為3.5321 mm至10.5963 mm,半視角為32.9 至12.1691,F/#為2.8至5.5,入瞳口徑為1.2615 mm至1.9266 mm。
以Apple iPhone 11 Pro為例,其手機厚度為8.1 mm,扣除兩面外殼厚度約3 mm後,則機構內厚度為5.1 mm。而鏡頭深度為稜鏡的厚度或鏡頭Y軸方向上之最大口徑,當鏡頭深度小於手機機構內厚度時,才能夠將其置入手機內。影響鏡頭深度的因素有感測器的Y軸方向長度、鏡頭的變焦焦段、入瞳口徑、入瞳位置與Y方向的視角。
若與感測器長寬比為4:3比較,使用長寬比為16:9的感測器,在對角線長度固定下,則感測器Y軸方向長度會降低,及Y方向的視角也跟著降低,藉此降低鏡頭深度,再利用真實光線追跡決定鏡片X方向及Y方向之有效口徑,並將鏡片外型設定為矩形,讓鏡頭Y方向之最大口徑能夠降低至小於等於稜鏡厚度,最終八百萬畫素變焦鏡頭設計之鏡頭深度為4.98 mm,若再降低感測器畫素數目至五百萬,鏡頭深度可為3.98 mm,也可置入手機內部。
Abstract
This therio proposes two designs, including periscope type of three times zoom lens for eight mega pixels and five mega pixels in a mobile phone camera respectively.
The periscope zoom lens is to add a right angle prism in front of the general zoom lens, which is to change the direction of the light path. The following are the design specifications of the three times zoom lens for eight-mega-pixels mobile phone camera, where the effective focal length is 3.5321 mm to 10.5963 mm, half angle of view is 32.9 to 12.1691, F/# is 2.8 to 5.5, and entrance pupil is 1.2615 mm to 1.9266 mm.
The lens depth is which the thickness of the prism or the maximum aperture in the Y direction of the lens, when lens depth is less than the thickness of the mobile phone, it can be placed in the mobile phone. The factors that affect the lens depth include the length of the sensor in the Y axis direction, the zooms of the lens, the entrance pupil diameter, the entrance pupil position, and the angle of view in the Y direction.
If compared with the sensor aspect ratio of 4:3, using a sensor with an aspect ratio of 16:9, under a fixed diagonal length, the length of the sensor in the Y axis direction will decrease, and the angle of view in the Y direction also decreases. Use real ray trace to decide the maximum aperture in the X direction and the maximum aperture in the Y direction, then the maximum aperture in the Y direction of the lens can be reduced by cut lens. The final lens depth is 4.98 mm. If the sensor pixel is reduced to 5 million, the lens depth can be 3.98 mm, it should be able to be placed inside the mobile phone.
目錄
摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VII
表目錄 XI
第一章 緒論 1
1-1 研究動機 1
1-2 文獻回顧 2
1-3 章節概要 8
第二章 設計原理 9
2-1 潛望鏡式鏡頭介紹 9
2-1.1直角稜鏡 9
2-1.2光路展開圖(tunnel diagram) 9
2-1.3機構厚度 10
2-2 半視角、像高及有效焦距 12
2-3 F/#、有效焦距及入瞳口徑 13
2-4 鏡頭深度定義 13
2-5 sensor長寬比16:9 15
2-6 稜鏡厚度 17
2-7 有效口徑計算 18
2-7.1入瞳上的參考光線R1~R5 18
2-7.2鏡片有效口徑 18
第三章 八百萬畫素潛望鏡式三倍變焦手機鏡頭設計 21
3-1 感測器規格 21
3-2 設計規格與目標 22
3-2.1變倍比 22
3-2.2像高、半視角、有效焦距 22
3-2.3 F/# 22
3-2.4 MTF 23
3-2.5 |SMTF-TMTF| 23
3-2.6橫向色差 23
3-2.7畸變 24
3-2.8設計規格與目標整理 25
3-3 起始值選取 26
3-4 設計流程 28
3-5 決定有效口徑 33
3-6 設計結果 35
3-6.1 MTF 36
3-6.2畸變 38
3-6.3橫向色差 39
3-6.4相對照度 40
3-6.5設計結果整理 41
3-7 公差分析 41
第四章 五百萬畫素潛望鏡式三倍變焦手機鏡頭設計 45
4-1 感測器規格 46
4-2 設計規格與目標整理 47
4-3 設計流程 48
4-4 設計結果 49
4-4.1 MTF 50
4-4.2畸變 52
4-4.3橫向色差 53
4-4.4相對照度 55
4-4.5設計結果整理 55
4-5 公差分析 56
第五章 結論 59
參考文獻 60
參考文獻
[1] D. V. Wick, T. Martinez, D. M. Payne, W. C. Sweatt, and S. R. Restaino, “Active optical zoom system,” Proc. SPIE 5798, 151-157 (2005).
[2] K. Matsusaka, S. Ozawa, R. Yoshida, T. Yuasa and Y. Souma, “Ultracompact optical zoom lens for mobile phone,” Proc. SPIE 6502, 1-10 (2007).
[3] S. Noda, “Zoom lens system,” U.S. patent 7,436,600 (Oct. 14, 2008).2
[4] S. C. Park and Y. J. Jo, “Ultra-Slim Zoom Lens Design for a 3x Mobile Camera,” J. Korean Phys. Soc. 52(4), 1048-1056 (2008).
[5] S. C. Park and S. H. Lee, “Compact Zoom Lens Design for a 5x Mobile Camera Using Prism,” J. Korean Phys. Soc. 13(2), 206-212 (2009).
[6] S. C. Park and S. H. Lee, “Zoom Lens Design for a 10x Slim Camera using Successive Procedures,” J. Korean Phys. Soc. 17(6), 518-524 (2013).
[7] S. C. Chia, “Compact zoom lens system and image pickup device with the same,” U.S. patent 8,184,378 (May 22, 2012).
[8] M. Sueyoshi, “Zoom lens, and an imaging apparatus using such zoom lens,” U.S. patent 7,110,186 (Sep. 19, 2006).
[9] H. Sato, T. Matsui, “Zoom lens and image pickup apparatus,” U.S. patent 7,242,529 (Jul. 10, 2007).
[10] K. Kojima, “Taking lens apparatus,” U.S. patent 7,508,595 (May 24, 2009).
[11] E. Shirota, “Zoom lens and imaging apparatus using the same,” U.S. patent 7,593,168 (Sep. 22, 2009).
[12] M. Morooka, H. Nagaoka, E. Shirota, M. Katakura, “Image pickup apparatus having wide angle zoom lens system,” U.S. patent 7,599,125 (Oct. 6, 2009).
[13] Y. Souma, “Zoom lens, image pickup apparatus and digital equipment,” U.S. patent 7,630,139 (Dec. 8, 2009).
[14] E. Shirota, “Image pickup apparatus having optical path reflecting zoom lenssystem,” U.S. patent7,643,223 (Jan.5,2010).
[15] Y. Matsumura, T. Iwashita, Y. Kurioka, S. Yamaguchi, “Zoom Lens Sysem, imaging device and camera,” U.S. patent 8,320,051 (Nov. 27, 2012).
[16] M. Katayose, K. Ono, H. Nagaoka, K. Hayakawa, “Zoom lens system for image pickup apparatus,” U.S. patent 8,432,464 (Apr. 30, 2013).
[17] W. Hackemer, “Miniature zoom lens,” U.S. patent 8,605,371 (Dec. 10, 2013).
[18] J. P. Seo, “Zoom lens system and image pickup apparatus,” U.S. patent 8,896,942 (Nov. 25, 2014).
[19] K. C. Wang, K. S. Hung, H. T. Chen, “Zoom lens and zoom lens module,” U.S. patent 9,140,880 (Sep. 22, 2015).
[20] R. Tomioka, “Zoom lens and imaging apparatus,” U.S. patent 9,568,715 (Feb. 14, 2017).
[21] S. Mihara, H. Konishi, T. Hanzawa, M. Watanabe, A. Ishii, T. Takeyama, A. ImaMURA, “Electronic image pickup system,” U.S. patent 9,696,524 (Jul. 4, 2017).
[22] OmniVision, “OV8856,” in image sensor, https://www.ovt.com/.
[23] M. Saori, “Zoom lens system,” U.S. patent 2012/0063004 (2012).
[24] 朱浦毅,「稜鏡陣列立體拍攝系統優化設計」,國立中央大學,碩士論文(2008)。
[25] 林彥瑜,「潛望鏡式八百萬畫素三倍、六倍、九倍手機鏡頭設計及稜鏡厚度與鏡片口徑分析」,國立中央大學,碩士論文(2017)。
[26] OmniVision, “OV5670,” in image sensor, https://www.ovt.com/
電子全文 電子全文(網際網路公開日期:20230801)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top