(35.175.212.130) 您好!臺灣時間:2021/05/18 04:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張郡方
研究生(外文):Chun-Fang Chang
論文名稱:藉由光聲訊號變化分析肌腱以及肌肉之張力
論文名稱(外文):Analyzation of muscle and tendon tension based on the variation of photoacoustic signal
指導教授:陳思妤陳思妤引用關係
指導教授(外文):Szu-Yu Chen
學位類別:碩士
校院名稱:國立中央大學
系所名稱:光電科學與工程學系
學門:工程學門
學類:電資工程學類
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:46
中文關鍵詞:光聲影像張力肌肉肌腱
外文關鍵詞:photoacoustic imagingtensionmuscletendon
相關次數:
  • 被引用被引用:0
  • 點閱點閱:24
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於運動風氣盛行,必然存在著運動傷害的風險,因運動傷害而受損的人體組織大多為肌腱以及肌肉,若能得知肌肉、肌腱與張力之間的關係,提供數據給醫學上作為診斷的依據,則能更方便做出精準的判斷,而此需求誘發科學家們對人體組織與張力間的好奇,因此建立了許多對人體生物組織的量測方法,使生物力學因此蓬勃發展。雖然近年來對活體量測逐漸重視,但是藉由傳統的量測方式要取得即時資訊並不容易,因此為了解決這方面的限制,更多結合成像系統的量測方法被提出並應用。
相較於傳統張力的量測方法,光聲影像系統能夠更快速取得肌肉以及肌腱組織的即時資訊。本實驗藉由1064 nm雷射作為光聲訊號的激發光源掃描二維的光聲訊號,首先利用電動平移台對肌肉以及肌腱組織施予不同的張力,觀察肌肉以及肌腱組織光聲訊號的變化,然而平移台僅能表示張力施予樣本時的伸長量,為了找出張力與伸長量間的關係,本研究利用彈簧分別量測樣本並在已知彈簧彈力係數的條件下,得到在不同伸長量的張力大小,再利用彈簧量測的結果對照光聲訊號變化與張力間的關係。
從二維光聲訊號變化可以發現,當平移台不斷拉伸樣本時,光聲訊號會逐漸降低,且肌肉及肌腱拉伸後的訊號下降程度並不相同。為了得知張力與伸長量間的關係,我們藉由彈簧進行多次量測,可觀察到肌肉及肌腱樣本所呈現的張力與伸長量的關係也不相同。在經由彈簧量測實驗結果後,我們便可得知光聲訊號與張力之間的關係,我們也對光聲訊號的下降趨勢做曲線擬合,可發現肌腱樣本較符合過去文獻中所觀察到的趨勢,但是肌肉樣本則不符合,在此推測有可能為樣本備制時所產生的差異。藉由本研究所獲得的組織張力與光聲訊號之間的關係,未來將可透過光聲影像的觀察來即時獲得肌肉及肌腱的張力資訊。
Due to the prevalence of sports, there is bound to be a risk of sports injuries. Most human tissues damaged by sports injuries are tendons and muscles. If the relationship between muscles, tendons and tension can be known, providing data for medical diagnosis can be more convenient to make accurate judgments. This demand induces scientists to be curious about the relationship between human tissue and tension. Therefore, many methods for measuring human biological tissue have been established, which has enabled biomechanics to flourish. Although more and more attention has been paid to in vivo measurement in recent years, it is not easy to obtain real-time information through traditional measurement methods. Therefore, in order to solve this limitation, more measurement methods combined with imaging systems have been proposed and applied.
Compared with traditional tension measurement methods, the photoacoustic imaging system can obtain real-time information of muscle and tendon tissue more quickly. In this experiment, a 1064 nm laser was used as the excitation light source for the photoacoustic signal to scan the two-dimensional photoacoustic signal. First, an electric translation stage was used to apply different tensions to the muscle and tendon tissue to observe the changes in the photoacoustic signal of the muscle and tendon tissue. However, the translation stage can only indicate the elongation when the tension is applied to the sample. In order to find the relationship between the tension and the elongation, this study uses springs to measure the samples separately and obtains the different elongations under the condition of known spring coefficients. Finally, we use the spring measurement result to compare the relationship between the photoacoustic signal change and the tension.
From the changes in the two-dimensional photoacoustic signal, it can be found that when the translation stage continues to stretch the sample, the photoacoustic signal will gradually decrease, and the signal decline after muscle and tendon stretching is not the same. In order to understand the relationship between tension and elongation, we used springs to do multiple measurements. It can be observed that the relationship between tension and elongation presented by the muscle and tendon samples are different. After measuring the experimental results of the spring, we can know the relationship between the photoacoustic signal and tension. We also do curve fitting of the photoacoustic signal, and we can find that the tendon samples are more consistent with the observations in the past literature However, the muscle sample does not meet the trend, and it is speculated here that there may be a difference in sample preparation. Based on the relationship between tension and photoacoustic signals obtained in this study, it will be possible to obtain real-time muscle and tendon tension information through the observation of photoacoustic images in the future.
中文摘要 v
abstract vi
誌謝 viii
目錄 ix
第一章、緒論 1
1-1 文獻回顧 1
1-2 研究動機 4
第二章、實驗原理 5
2-1 光聲效應原理 5
2-1-1 光聲波的產生 5
2-1-2 光聲效應的前提假設 5
2-1-3 初始光聲訊號 6
2-1-4 光聲波方程式 7
2-1-5 球型聲源光聲訊號 8
2-2 肌肉與肌腱特性 8
2-3肌肉與肌腱組織光聲訊號與張力的關係 11
第三章、實驗架構與流程 13
3-1 光聲顯微影像系統架構 13
3-2 掃描系統 15
3-3 拉伸系統 16
3-4 實驗步驟 18
3-5 張力量測 19
3-6 樣本備置 20
第四章、實驗結果 21
4-1 肌肉樣本 21
4-2 肌腱樣本 23
4-3 彈簧量測樣本張力結果 26
4-4 張力及光聲訊號的關係 29
4-5 光聲訊號下降趨勢驗證 30
第五章、結論 32
參考文獻 33
[1] R. Messier, J. a. Duffy, H. Litchman, P. Paslay, J. Soechting, and P. J. I. J. o. M. S. Stewart,
"The electromyogram as a measure of tension in the human biceps and triceps muscles," 13, 585-598 (1971).
[2] A. Cribb and J. Scott, "Tendon response to tensile stress: an ultrastructural investigation of collagen: proteoglycan interactions in stressed tendon," Journal of anatomy 187, 423 (1995).
[3] Y. Kawakami, K. Nakazawa, T. Fujimoto, D. Nozaki, M. Miyashita, and T. Fukunaga, "Specific tension of elbow flexor and extensor muscles based on magnetic resonance imaging," European journal of applied physiology and occupational physiology 68, 139-147 (1994).
[4] S. Duenwald, H. Kobayashi, K. Frisch, R. Lakes, and R. Vanderby Jr, "Ultrasound echo is related to stress and strain in tendon," Journal of biomechanics 44, 424-429 (2011).
[5] K. A. Hansen, J. K. Barton, and J. A. Weiss, "Optical coherence tomography imaging of collagenous tissue microstructure," in Laser-Tissue Interaction XI: Photochemical, Photothermal, and Photomechanical (International Society for Optics and Photonics2000), pp. 581-587.
[6] H. D. Lee, J. G. Shin, H. Hyun, B.-A. Yu, and T. J. Eom, "Label-free photoacoustic microscopy for in-vivo tendon imaging using a fiber-based pulse laser," Scientific reports 8, 1-9 (2018).
[7] J. R. Crass, G. Van de Vegte, and L. A. Harkavy, "Tendon echogenicity: ex vivo study," Radiology 167, 499-501 (1988).
[8] C. Rashidifard, C. Vercollone, S. Martin, B. Liu, and M. E. Brezinski, "The application of optical coherence tomography in musculoskeletal disease," Arthritis 2013 (2013).
[9] P. Hai, Y. Zhou, L. Gong, and L. V. Wang, "Quantitative photoacoustic elastography in humans," Journal of biomedical optics 21, 066011 (2016).
[10] Y.-S. Chen, D. Yeager, and S. Y. Emelianov, "Photoacoustic Imaging for Cancer Diagnosis and Therapy Guidance," in Cancer Theranostics (Elsevier, 2014), pp. 139-158.
[11] L. V. Wang and H.-i. Wu, Biomedical optics: principles and imaging (John Wiley & Sons, 2012).
[12] C. Hoelen and F. De Mul, "A new theoretical approach to photoacoustic signal generation," The Journal of the Acoustical Society of America 106, 695-706 (1999).
[13] M. W. Sigrist and F. K. Kneubühl, "Laser‐generated stress waves in liquids," The Journal of the Acoustical Society of America 64, 1652-1663 (1978).
[14] "Endomysium, Perimysium and epimysium - definition, histology," http://www.medicinehack.com/2016/12/endomysium-perimysium-and-epimysium.html.
[15] P. P. Purslow, "The structure and functional significance of variations in the connective tissue within muscle," Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 133, 947-966 (2002).
[16] Y. Gao, T. Y. Kostrominova, J. A. Faulkner, and A. S. Wineman, "Age-related changes in the mechanical properties of the epimysium in skeletal muscles of rats," Journal of biomechanics 41, 465-469 (2008).
[17] L. G. Józsa, "Human tendons: anatomy, physiology and pathology," Human kinetics (1997).
[18] F. H. Silver, J. W. Freeman, and G. P. Seehra, "Collagen self-assembly and the development of tendon mechanical properties," Journal of biomechanics 36, 1529-1553 (2003).
[19] J. Wilmink, A. Wilson, and A. Goodship, "Functional significance of the morphology and micromechanics of collagen fibres in relation to partial rupture of the superficial digital flexor tendon in racehorses," Research in veterinary science 53, 354-359 (1992).
[20] J. H.-C. Wang, "Mechanobiology of tendon," Journal of biomechanics 39, 1563-1582 (2006).
[21] L. David, E. S. Grood, F. R. Noyes, and R. E. Zernicke, "Biomechanics of ligaments and tendons," Exercise and sport sciences reviews 6, 125-182 (1978).
[22] B. Katz, "The relation between force and speed in muscular contraction," The Journal of Physiology 96, 45-64 (1939).
[23] R. B. Svensson, P. Hansen, T. Hassenkam, B. T. Haraldsson, P. Aagaard, V. Kovanen, M. Krogsgaard, M. Kjaer, and S. P. Magnusson, "Mechanical properties of human patellar tendon at the hierarchical levels of tendon and fibril," Journal of Applied Physiology 112, 419-426 (2012).
電子全文 電子全文(網際網路公開日期:20250730)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文