(3.238.173.209) 您好!臺灣時間:2021/05/16 21:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳靜儒
研究生(外文):Ching-Ju Chen
論文名稱:Ag/BCP:ZnO NPs膜層的探討應用於雙面反式鈣鈦礦薄膜太陽能電池
論文名稱(外文):Investigation of Ag/BCP: ZnO NPs films applied to the bifacial inverted perovskite thin film solar cells
指導教授:陳昇暉張勝雄張勝雄引用關係
指導教授(外文):Sheng-Hui ChenSheng-Hsiung Chang
學位類別:碩士
校院名稱:國立中央大學
系所名稱:光電科學與工程學系
學門:工程學門
學類:電資工程學類
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:138
中文關鍵詞:鈣鈦礦鈣鈦礦太陽能電池薄膜
相關次數:
  • 被引用被引用:0
  • 點閱點閱:30
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
鈣鈦礦薄膜太陽能電池在近幾年期間,光電轉換效率急速上升地來到
25.2 %,不過成長幅度隨著單一接面限制也日漸趨緩,全球的科學家利
用堆疊型鈣鈦礦薄膜太陽能電池以突破光電轉換效率,此類型是以高
能隙太陽能電池(鈣鈦礦薄膜太陽能電池)堆疊於低能隙太陽能電池(矽
基太陽能電池),分別吸收不同波段的太陽光,因此製備出半透明鈣鈦
礦薄膜太陽能電池是實現堆疊型鈣鈦礦/矽薄膜太陽能電池的先前工
作。本論文採用半透明雙面鈣鈦礦薄膜太陽能電池的架構為:
AZO/Ag/BCP: ZnO NPs/PC61BM/CH3NH3PbI3/PEDOT:PSS/ITO/glass。透
明導電的鋁摻雜之氧化鋅(Al-doped ZnO, AZO)薄膜為陰極、氧化銦錫
(ITO)薄膜為陽極;奈米級 Ag 為緩衝層; Bathocuproine: ZnO nanoparticles
(BCP: ZnO NPs)為緩衝層兼電子傳輸層; phenyl-C61-butyric acid methyl
ester (PC61BM) 為 電 子 傳 輸 層 、 poly(3,4- ethylenedioxythiophene)
polystyrene sulfonate (PEDOT:PSS)為電洞傳輸層; CH3NH3PbI3 則是元件
的吸光層。
透過 BCP: ZnO NPs 製程參數的調控、Ag 厚度與蒸鍍鍍率的改變、
濺鍍 AZO 功率與膜層厚度的挑選,製備出的半透明雙面鈣鈦礦薄膜太
陽能電池當太陽光由 ITO 面照射太陽能電池,元件最高的功率轉換效
率(power conversion efficiency, PCE)可達 11.08 %,此元件的短路電
ii
流密度(short-circuit current density, JSC)為 21.30 mA / cm2、開路電壓
(open-circuit voltage, VOC)為 0.89 V 和填充係數(fill factor, FF)為
57.46 %;當太陽光由 AZO 面照射太陽能電池,元件最高的功率轉換效
率(power conversion efficiency, PCE)可達 5.40 %,此元件的短路電流
密度(short-circuit current density, JSC)為 9.33 mA / cm2、開路電壓(opencircuit voltage, VOC)為 0.88 V 和填充係數(fill factor, FF)為 64.6 %
最後,透過分析光強度相依的電流密度-電壓曲線,證實了鈣鈦礦
薄膜的電洞傳遞的性質優於電子傳遞的性質。此特性的理解有助於將
來實現高效率的雙面鈣鈦礦薄膜太陽能電池元件。
The power conversion efficiency (PCE) of perovskite thin film solar
cells have increased rapidly to 25.2 %. However, the increment in the PCE
is getting slower for the limitation of the single junction. To increase the PCE,
the perovskite/inorganic tandem configuration has been proposed. In the
tandem solar cell, the large bandgap perovskite solar cell has to be fabricated
on the low bandgap inorganic solar cell. Therefore, an efficient semitransparent perovskite thin film solar cell has to be developed in advance.
In this research, the architecture of the semi-transparent bifacial
perovskite thin film solar cell is: Al-doped ZnO/Ag/BCP: ZnO
NPs/PC61BM/CH3NH3PbI3/PEDOT:PSS/ITO/glass. Al-doped ZnO (AZO)
and ITO are used as the cathode and the anode, respectively. PCBM and
PEDOT:PSS are used as the electron transport layer (ETL) and the hole
transport layer (HTL), respectively. CH3NH3PbI3 thin film is used as the light
absorbed material (LAM). Ag/BCP: ZnO NPs is used as the buffer layer and
ETL modified layer.
After the optimization process, the highest PCE of the bifacial
perovskite thin film solar cell is 11.08% when the device is illuminated from
the ITO side, the short-circuit current density (JSC) is 21.30 mA/cm2
, the
open-circuit voltage (VOC) is 0.89 V and the fill factor (FF) is 57.46 %. The
highest PCE of the bifacial perovskite thin film solar cell is 5.40 % when the
device is illuminated from the AZO side, the JSC is 9.33 mA/cm2
, VOC is 0.88
V and FF is 64.6 %. Finally, from the light intensity-dependent FF of the
bifacial perovskite solar cell show that the hole mobility is higher than the
electron mobility in the CH3NH3PbI3 thin film.
摘要................................................................................. i
Abstract........................................................................ iii
致謝............................................................................... iv
目錄............................................................................... vi
第一章 緒論.................................................................. 1
1.1 前言................................................................................... 1
1.2 太陽能電池發展與種類簡介 .......................................... 4
1.2.1 無機類型太陽能電池........................................................... 6
1.2.2 有機類型太陽能電池........................................................... 7
1.2.2.1 染料敏化太陽能電池(Dye-sensitized Solar Cells) .......... 8
1.3 研究動機......................................................................... 10
1.4 本文架構......................................................................... 13
第二章 鈣鈦礦薄膜太陽能電池發展與文獻回顧..... 14
2.1 鈣鈦礦材料結構歷史 .................................................... 14
2.2 平面異質接面鈣鈦礦太陽能電池結構........................ 18
2.2.1 平面 n-i-p 鈣鈦礦太陽能電池........................................... 18
2.2.2 反式 p-i-n 鈣鈦礦太陽能電池........................................... 19
2.3 鈣鈦礦膜層品質好壞的因素 ........................................ 21
vii
2.4 鈣鈦礦薄膜太陽能電池運作原理 ................................ 25
2.5 半透明鈣鈦礦薄膜太陽能電池文獻回顧.................... 28
2.6 兩接點與四接點堆疊式薄膜太陽能電池.................... 34
第三章 實驗方法........................................................ 36
3.1 藥品與溶液配置 ............................................................ 36
3.1.1 實驗藥品............................................................................. 36
3.1.2 調配溶液.............................................................................. 37
3.2 實驗儀器......................................................................... 40
3.2.1 低水氧手套箱(Glove Box System).................................... 40
3.2.2 旋轉塗佈機(Spin Coater)................................................... 40
3.2.3 熱蒸發蒸鍍系統(Thermal Evaporator System)................. 40
3.2.4 多腔式 RF 射頻磁控濺鍍系統(RF Magnetron Sputtering
Deposition).................................................................................... 41
3.3 半透明鈣鈦礦薄膜太陽能電池製作流程.................... 43
3.3.1 ITO pattern 玻璃清潔.......................................................... 44
3.3.2 使用 UV-Ozone cleaner 做表面處理................................. 44
3.3.3 旋塗 PEDOT:PSS 與熱退火處理 ...................................... 44
3.3.4 旋塗鈣鈦礦 CH3NH3PbI3層與熱退火處理 ...................... 45
3.3.5 旋塗 PC61BM 層與溶劑退火處理..................................... 46
viii
3.3.6 旋塗 BCP: ZnO NPs 層與熱退火處理.............................. 46
3.3.7 刮出電極............................................................................. 46
3.3.8 熱蒸鍍薄銀緩衝層............................................................. 46
3.3.9 RF 射頻磁控濺鍍 AZO 透明導電膜電極.......................... 47
3.4 量測儀器......................................................................... 48
3.4.1 掃描式電子顯微鏡(Scanning Electron Microscope)......... 48
3.4.2 紫外光 / 可 見 光 / 紅外光 光譜儀 (UV/Visible/NIR
Spectrophotometer, Hitachi U-4100)............................................ 49
3.4.3 太陽光模擬器與 IV 量測系統(DRIEL LSS-7120 Solar
Simulator)...................................................................................... 49
3.4.4 拉曼光譜儀(Raman Spectra).............................................. 50
第四章 半透明鈣鈦礦薄膜太陽能電池製作與結果分析
...................................................................................... 52
4.1 應用 ZnO NPs 作為緩衝層之鈣鈦礦薄膜太陽能電池52
4.1.1 應用 ZnO NPs 緩衝層之鈣鈦礦薄膜太陽能電池之 J-V
curve 分析..................................................................................... 52
4.1.2 改變 ZnO NPs 緩衝層厚度之鈣鈦礦薄膜太陽能電池之 JV curve 分析 ................................................................................. 55
4.1.3 ZnO NPs 薄膜之 SEM 分析................................................ 57
ix
4.1.4 以異丙醇稀釋 ZnO NPs ink 之 J-V curve 分析................ 58
4.2 應用 BCP: ZnO NPs 作為緩衝層之鈣鈦礦薄膜太陽能
電池........................................................................................ 61
4.2.1 應用 BCP 與 ZnO NPs 溶液不同比例作為緩衝層之鈣鈦
礦薄膜太陽能電池 J-V curve 分析............................................. 61
4.2.2 BCP: ZnO NPs 膜層之拉曼光譜分析............................... 63
4.2.3 BCP: ZnO NPs 膜層之吸收光譜分析............................... 65
4.2.4 改變旋轉塗佈 BCP: ZnO NPs 緩衝層轉速之鈣鈦礦薄膜太
陽能電池 J-V curve 分析 ............................................................. 68
4.2.5 BCP: ZnO NPs 膜層不同厚度之拉曼光譜分析............... 70
4.3 半透明鈣鈦礦薄膜太陽能電池製作與優化................ 74
4.3.1 以 BCP: ZnO NPs 作為緩衝層之雙面鈣鈦礦薄膜太陽能電
池結果之 J-V curve 分析 ............................................................. 74
4.3.2 導入 Ag/BCP: ZnO NPs 作為緩衝層之銀不同厚度下之半
透明鈣鈦礦薄膜太陽能電池之 J-V curve 分析......................... 75
4.3.3 透明電極 AZO 不同濺鍍功率下之半透明鈣鈦礦薄膜太陽
能電池之 J-V curve 分析 ............................................................. 78
4.3.4 透明電極 AZO 不同厚度下之雙面鈣鈦礦薄膜太陽能電池
之 J-V curve 分析 ......................................................................... 80
x
4.3.5 AZO/Ag/BCP: ZnO NPs 之 AZO 不同厚度下之穿透光譜分
析................................................................................................... 82
4.3.6 改變緩衝層銀鍍率之雙面鈣鈦礦薄膜太陽能電池之 J-V
curve 分析..................................................................................... 84
4.3.7 AZO/Ag/BCP: ZnO NPs 膜層之 Ag 不同鍍率下之穿透光譜
分析............................................................................................... 86
4.3.8 Ag/BCP: ZnO NPs 膜層之 Ag 不同鍍率下之拉曼光譜分析
....................................................................................................... 87
4.3.9 單獨加入銀作為緩衝層之半透明鈣鈦礦薄膜太陽能電池
之 J-V curve 分析 ......................................................................... 89
4.4 雙面鈣鈦礦薄膜太陽能電池之特性分析.................... 92
4.4.1 雙面鈣鈦礦薄膜太陽能電池之 IPCE 分析...................... 92
4.4.2 雙面鈣鈦礦薄膜太陽能電池之時間-最大功率點 (MPP)
曲線............................................................................................... 93
4.4.3 雙面鈣鈦礦薄膜太陽能電池之 Light intensity-dependent
JV curve 與 fill factor(FF) 分析 .................................................. 94
4.4.4 雙面鈣鈦礦薄膜太陽能電池之穿透光譜與堆疊型鈣鈦礦
薄膜太陽能電池結果................................................................... 97
4.4.5 雙面鈣鈦礦薄膜太陽能電池之穩定性分析..................... 98
xi
第五章 結論.............................................................. 100
參考文獻.................................................................... 105
[1] 陳鍾誠, "世界史-工業革命," 世界歷史, 取自
https://medium.com/%E4%B8%96%E7%95%8C%E6%AD%B7%E5%8F
%B2/%E4%B8%96%E7%95%8C%E5%8F%B2-
%E5%B7%A5%E6%A5%AD%E9%9D%A9%E5%91%BD6ab1c72a1a86
[2] 許祐群, "下一波能源衝擊-從工業革命到石油危機," 取自
http://203.71.79.117/mklibrary/t_paper/paper.php?pageNum_sql=1&t_year
=2008123101
[3] Hightech, "太陽能的原理、種類與優缺點," 取自
https://reurl.cc/3DA810
[4] L. L. Kazmerski, "Best Reaserch-Cell Efficiencies," National
Renewable Energy Laboratory (NREL), 2019.
[5] 吳育任, "淺談太陽能電池的原理與應用," 臺大電機系科普系列,
https://ee.ntu.edu.tw/highschool/article/content/navSN/570
[6] Solar energy, "太陽能電池種類," 取自
https://sites.google.com/site/solar energy10399282/10-1
[7] 台灣太陽能電池產業協會, "有機太陽能電池之優勢與發展趨勢,"
取自 http://www.topira.org.tw/organic-solar-cell/
[8] 陳祉雲和李玉郎,「染料敏化太陽能電池」,國內學術電子期刊系
統,vol. 564,12 月 2019。
[9] Juan Bisquert, "Dye solar cell façade at SwissTech convention center at
106
EPFL, by Solaronix," 2014,
https://juanbisquert.wordpress.com/2014/04/08/dye-solar-cell-facade-atswisstech-covention-center-at-epfl-by-solaronix/
[10] "有機太陽電池的研發動向," 太陽光電產業協會, 取自
https://www.tpvia.org.tw/
[11] H. Tsubomura, M. Matsumura, Y. Nomura& T. Amamiya, "Dye
sensitised zinc oxide: aqueous electrolyte: platinum photocell." Nature, vol.
261(5559), pp. 402–403, 1976.
[12] B. O’Regan& M. Grätzel, "A low-cost, high-efficiency solar cell based
on dye-sensitized colloidal TiO2 films." Nature, vol. 353(6346), pp. 737-
740, 1991.
[13] Y. Ooyama & Y. Harima, "Molecular Designs and Syntheses of
Organic Dyes for Dye-Sensitized Solar Cells. " European Journal of
Organic Chemistry, pp. 2903-2934, 2009.
[14] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, "Organometal
halide perovskites as visible-light sensitizers for photovoltaic cells,"
Journal of the American Chemical Society, vol. 131, pp. 6050-6051, 2009.
[15] Hillary Sanctuary, "Perovskite Solar Cells Surpass 20% Efficiency,"
EPFL, 2016.
[16] S. P. Bremner, M. Y. Levy& C. B. Honsberg, "Analysis of tandem
solar cell efficiencies under AM1.5G spectrum using a rapid flux
calculation method. " Progress in Photovoltaics: Research and
Applications, vol. 16(3), pp. 225-233, 2008.
[17] "silver," Wikipedia, https://en.wikipedia.org/wiki/Silver
[18] 楊明輝,「透明導電膜材料與成膜技術的新發展」,工業材料,第
107
189 期, pp.161~174,2000 年。
[19] Reshmi Varma, "Low-Dimensional Perovskites." Perovskite
Photovoltaics, pp. 197–229, 2018.
[20] A. Jain, I. E. Castelli, G. Hautier, D. H. Bailey& K. W. Jacobsen,
"Performance of genetic algorithms in search for water splitting
perovskites. " Journal of Materials Science, vol. 48(19), pp. 6519–6534,
2013.
[21] Z. Song, S. C. Watthage, A. B. Phillips & M. J. Heben, "Pathways
toward high-performance perovskite solar cells: review of recent advances
in organo-metal halide perovskites for photovoltaic applications. " Journal
of Photonics for Energy, vol. 6, p. 22001, 2016.
[22] N. -G. Park, "Perovskite solar cells: an emerging photovoltaic
technology. " Materials Today, vol. 18(2), pp. 65–72, 2015.
[23] S. D. Wolf, J. Holovskym, S. -J. Moon, P. Löper, B. Niesen, M.
Ledinsky, F. -J. Haug, J. -H. Yum& C. Ballif, "Organometallic Halide
Perovskites: Sharp Optical Absorption Edge and Its Relation to
Photovoltaic Performance. " The Journal of Physical Chemistry Letters,
vol. 5(6), pp. 1035-1039, 2014.
[24] K. Tanaka, T. Takahashi, T. Ban, T. Kondo, K. Uchida, & N. Miura,
"Comparative study on the excitons in lead-halide-based perovskite-type
crystals CH3NH3PbBr3 CH3NH3PbI3." Solid state communications, vol.
127, pp. 619-623, 2003.
[25] S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P.
Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, H. J. Snaith, "Electron-Hole
Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide
108
Perovskite Absorber." Science, vol. 342(6156), pp. 341–344, 2013.
[26] E. M. Hutter, M. C. Gélvez-Rueda, A. Osherov, V. Bulović, F. C.
Grozema, S. D. Stranks, T. J. Savenije, "Direct-indirect character of the
bandgap in methylammonium lead iodide perovskite. " Nature Materials,
vol. 16(1), pp. 115–120, 2016.
[27] J.-H. Im., C.-R. Lee, J.-W. Lee, S-W Parka, and N.-G. Park., "6.5%
efficient perovskite quantum-dot-sensitized solar cell. " Nanoscale, vol. 3,
pp. 4088, 2011.
[28] H. -S. Kim, C. -R. Lee, J. -H. Im, K. -B. Lee, T. Moehl, A. Marchioro,
S. -J. Moon, R. Humphry-Baker, J. -H. Yum, J. E. Moser, M. Gra¨tzel & N.
-G. Park, "Lead Iodide Perovskite Sensitized All-Solid-State Submicron
Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%."
Scientific Reports, vol. 2(1), 2012.
[29] J. H. Heo, S. H. Im, J. H. Noh, M. Gra¨tzel, S. I. Seok., "Efficient
inorganic–organic hybrid heterojunction solar cells containing perovskite
compound and polymeric hole conductors. " Nature Photonics, vol. 7(6),
pp. 486–491, 2013.
[30] M. Liu, M. B. Johnston, & H. J. Snaith, "Efficient planar
heterojunction perovskite solar cells by vapour deposition." Nature, vol.
501(7467), pp. 395-398, 2013.
[31] H. Zhou, Q. Chen, G. Li, S. Luo, T. -B. Song, H. -S. Duan, Z. Hong, J.
You, Y. Liu & Y. Yang, "Interface engineering of highly efficient perovskite
solar cells. " Science, vol. 345(6196), pp. 542-546, 2014.
[32] M. Saliba, T. Matsui, J. -Y. Seo, K. Domanski, J. -P. Correa-Baena, M.
K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldtd,
109
and M. Grätzel, "Cesium-containing triple cation perovskite solar cells:
improved stability, reproducibility and high efficiency. " Energy&
Environmental Science, vol. 9(6), pp. 1989-1997, 2016.
[33] S. C. Watthage, Z. Song, A. B. Phillips and M. J. Heben, "Evolution of
Perovskite Solar Cells. " Perovskite Photovoltaics, pp. 43–88, 2018.
[34] I. Hussain, H. P. Tran, J. Jaksik, J. Moore, N. Islam, and M. J.
Uddin, "Functional materials, device architecture, and flexibility of
perovskite solar cell. " Emergent Materials, 2018.
[35] S. H. Chang, C. -C. Chen, H. -M. Cheng & S. -H. Chen, "Structural,
Optical, Electrical and Electronic Properties of PEDOT: PSS Thin Films
and Their Application in Solar Cells. " Printable Solar Cells, pp. 263–288,
2017.
[36] 黃偉宸,「碳六十衍生物於鈣鈦礦材料介面之研究及其太陽能電
池之特性」,國立中央大學,碩士論文,民國 106 年。
[37] C. Chen, S. Zhang, S. Wu, W. Zhang, H. Zhu, Z. Xiong, Y. Zhang &
W. Chen, "Effect of BCP buffer layer on eliminating charge accumulation
for high performance of inverted perovskite solar cells. " RSC Advances,
vol. 7(57), pp. 35819–35826, 2017.
[38] 陳新傑、岳宏霖、莊名凱、陳方中,「鈣鈦礦太陽能電池」,奈米
通訊,24 券 No.2,21-26 頁,2017。
[39] R. Singh, S. R. Suranagi, M. Kumar& V. K. Shukla, " Investigations
on the role of mixed-solvent for improved efficiency in perovskite solar
cell. " Journal of Applied Physics, vol. 122(23), p. 235302, 2017.
[40] H. -S. Kim, S. H. Im& N. -G. Park, "Organolead halide perovskite:
110
new horizons in solar cell research. " The Journal of Physical Chemistry C,
vol. 118(11), pp. 5615-5625, 2014.
[41] N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu& S. I. Seok,
"Solvent engineering for high-performance inorganic–organic hybrid
perovskite solar cells. " Nature Materials, vol. 13(9), pp. 897-903, 2014.
[42] J. -H. Im, C. -R. Lee, J. -W. Lee, S. -W. Park& N. -G. Park, "6.5%
efficient perovskite quantum-dot-sensitized solar cell. " Nanoscale, vol. 3(10),
p. 4088, 2011.
[43] M. Xiao, F. Huang, W. Huang, Y. Dkhissi, Y. Zhu, J. Etheridge, A.
Gray-Weale, U. Bach, Y. -B. Cheng& L. Spiccia, " A Fast Deposition‐
Crystallization Procedure for Highly Efficient Lead Iodide Perovskite Thin‐
Film Solar Cells. "Thin-Film Solar Cells, Angewandte Chemie, vol.
126(37), pp. 10056–10061, 2014.
[44] F. Huang, et al, "Gas-assisted preparation of lead iodide perovskite
films consisting of a monolayer of single crystalline grains for high
efficiency planar solar cells." Nano Energy, vol. 10, pp. 10-18, 2014.
[45] W. -J. Yin, T. Shi& Y. Yan, "Unusual defect physics in
CH3NH3PbIperovskite solar cell absorber. " Applied Physics Letters, vol.
104(6), p. 063903, 2014.
[46] J.H. Im, I.H. Jang, N. Pellet, M. Gratzel, N.G. Park, "Growth of
CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite
solar cells." Nature nanotechnology, vol. 9. 11,2014.
[47] F. Brivio, A. B. Walker& A. Walsh, "Structural and electronic
properties of hybrid perovskites for high-efficiency thin-film photovoltaics
from first-principles. " APL Materials, vol. 1(4), p. 042111, 2013.
111
[48] J. M. Frost, K. T. Butler, F. Brivio, C. H. Hendon, M. Van
Schilfgaarde& A. Walsh, "Atomistic origins of high-performance in hybrid
halide perovskite solar cells . " Nano Letters, vol. 14(5), pp. 2584-2590,
2014.
[49] 張勝雄、吳家任,「光能轉換成電能:材料的光、熱、電特性之
影響」,物理雙月刊,2020。
[50] H. A. Dewi, H. Wang, J. Li, M. Thway, R. Sridharan, R. Stangl, F. Lin,
A. G. Aberle, N. Mathews, A. Bruno& S. Mhaisalkar, "Highly Efficient
Semitransparent Perovskite Solar Cells for Four Terminal PerovskiteSilicon Tandems. " ACS Applied Materials & Interfaces, 2019.
[51] K. -M. Lee, K. -S. Chen, J. -R. Wu, Y. -D. Lin, S. -M. Yu, S. H. Chang,
"Highly efficient and stable semi-transparent perovskite solar modules with a
trilayer anode electrode. " Nanoscale, 2018.
[52] F. Guo, H. Azimi, Y. Hou, T. Przybilla, M. Hu, C. Bronnbauer, S.
Langner, E. Spiecker, K. Forberich, C. J. Brabec, "High-performance
semitransparent perovskite solar cells with solution-processed silver
nanowires as top electrodes. " Nanoscale, vol. 7(5), pp. 1642-1649, 2015.
[53] F. Fu, T. Feurer, T. P. Weiss, S. Pisoni, E. Avancini, C. Andres, S.
Buecheler& A. N. Tiwari, "High-efficiency inverted semi-transparent
planar perovskite solar cells in substrate configuration. " Nature energy,
vol. 16190, 2017.
[54] 許弘儒、吳世雄、童永樑、蔡松雨, "鈣鈦礦太陽電池於堆疊型太
陽電池之應用. " 工研院綠能所, 2018.
[55] M. Najafi, F. Di Giacomo, D. Zhang, S. Shanmugam, A. Senes, W.
112
Verhees, A. Hadipour, Y. Galagan, T. Aernouts, S. Veenstra& R.
Andriessen, "Highly Efficient and Stable Flexible Perovskite Solar Cells
with Metal Oxides Nanoparticle Charge Extraction Layers. " Small, vol.
14(12), p. 1702775, 2018.
[56] F. Zhang, K. Zhu, "Additive Engineering for Efficient and Stable
Perovskite Solar Cells. " Advance Energy Materials, vol. 1902579, 2019.
[57] G. I. N. Waterhouse, G. A. Bowmaker, J. B. Metson, "The thermal
decomposition of silver (I, III) oxide: A combined XRD, FT-IR and Raman
spectroscopic study. " Phys. Chem. Chem. Phys. , vol. 3, pp. 3838-3845,
2001.
[58] S. Gayathri, O. S. N. Ghosh, S. Sathishkumar, P. Sudhakara,
"Investigation of physicochemical properties of Ag doped ZnO
nanoparticles prepared by chemical route, Applied Science Letters, vol.
1(1):8, 2015.
[59] S. R. Bayathathagari, S. V. Reddy, K. R. Nandanapalli, "Physical and
magnetic properties of (Co, Ag) doped ZnO nanoparticles . " Journal of
Materials Science Materials in Electronics, vol. 24(12), 2013.
[60] A. Ates, M.A. Yildirim, M. Kundakci, M. Yildirim, "Investigation of
optical and structural properties of CdS thin films," Chin. J. Phys., vol.
45, pp. 135-141, 2007.
[61] K. -M. Lee, S. H. Chang, M.-C. Wu, C.-G. Wu, "Raman and
photoluminescence investigation of CdS/CdSe quantum dots on TiO2
nanoparticles with multi-walled carbon nanotubes and their application in
solar cells. " Vibrational Spectroscopy, vol. 80, pp. 66-69, 2015.
[62] L. J. A. Koster, V. D. Mihailetchi, R. Ramaker, P. W. M. Blom, "Light
113
intensity dependence of open-circuit voltage of polymer:fullerene solar
cells. " Appl. Phys. Lett,, vol. 86, p. 123509, 2005.
[63] S.-E. Chiang, J.-R. Wu, H.-M. Cheng, C.-L. Hsu, J.-L. Shen, C.-T.
Yuan, S. H. Chang, "Origins of the s-shape characteristics in J-V curve of
inverted-type perovskite solar cells. " Nanotechnology, vol. 31, p. 115403,
2020.
[64] H. -C. Hsu, B. -C. Huang, S. -C. Chin, C. -R. Hsing, D. -L. Nguyen,
M. Schnedler, R. Sankar, R. E. Dunin-Borkowski, C. -M. Wei, C. -W.
Chen, P. Ebert& Ya. -P. Chiu, "Photodriven Dipole Reordering: Key to
Carrier Separation in Metalorganic Halide Perovskites. " ACS Nano, pp.
4402-4409, 2019.
[65] L. M. Herz, "Charge-Carrier Mobilities in Metal Halide Perovskites:
Fundamental Mechanisms and Limits. " ACS Energy Letters, vol. 2(7), pp.
1539-1548, 2017.
[66] M. A. Green, K. Emery, Y. Hishikawa, W. Warta, E. D. Dunlop, D. H.
Levi& A. W. Y. Ho-Baillie, "Solar cell efficiency tables (version 49). "
Progress in Photovoltaics: Research and Applications, vol. 25(1), pp. 3-13,
2016.
電子全文 電子全文(網際網路公開日期:20250901)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top