( 您好!臺灣時間:2021/05/06 06:53
字體大小: 字級放大   字級縮小   預設字形  


研究生(外文):Zi-Hao Weng
論文名稱(外文):Research of the Interface State and Zak Phase of Multilayer Periodic Structure with Inversion Symmetry
指導教授(外文):Pi-Gang Luan
  • 被引用被引用:0
  • 點閱點閱:71
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要探討兩種材料 (AB 週期層狀結構) 與三種材料 (ABC 週期層狀結構)
所構成的一維光子晶體系統的能帶拓樸相變 (topological transition) 與介面態
(interface state)。已知在 AB 週期層狀結構中,當設定晶胞具有反射對稱性
(inversion symmetry) 時,各能帶的札克相 (Zak phase) 只有兩個可能值: 0 與 π;
利用一個晶胞內的光程差不變量,我們可以使一個能隙 (gap) 從打開變成閉合然後
相變 (topological transition),也就是能帶反轉 (band inversion) 的現象。將拓樸相變
前後的兩種 AB 週期結構相接,會在能隙中發現透射率出現峰值,這代表著介面態
(interface state) 的產生。把以上的方法推廣到 ABC 層狀結構,會發現此結構利用光
程差不變量所調整出來的能隙會比 AB 週期層狀結構的還來的小許多,而透射率峰
如果在 ABC 週期層狀結構當中將 B 的結構參數固定,只調整 A 和 C 的結構參數來
設計相變前的能隙,那麼直接將 A 與 C 層相互對調的結構就是設計上最簡單又可
This thesis mainly discusses the topological phase transition of the energy bands and
interface state of a one-dimensional photonic crystal system composed of two materials
(AB periodic layered structure) and three materials (ABC periodic layered structure). It is
known that in the AB periodic layered structure, when the unit cell is set to have inversion
symmetry, the Zak phase of each energy band can take only two possible values: 0 or π.
However, we can choose appropriate permittivity and thickness of each layer to design the
desired topological bands. With the adjustment of the above parameters and keeping the
optical path difference in a unit cell invariant, we can tune a bandgap from open to close
and reopen again. When calculating the Zak phase of the band above and below the energy
gap, it is found that there is a topological phase transition related to the band inversion
phenomenon. Connecting the two AB periodic structures before and after the topological
phase transition, a transmittance peak is found in the bandgap, which corresponds to the
existence of the interface state. Generalizing the above method and applying it to the ABC
layered structures, it is found that the bandgap designed in accordance with the invariance
of the optical path difference will be much smaller than that of the AB periodic layered
structures, and the bandwidth of the transmittance peak becomes narrower. This means that
the localization effect of the interface state in the ABC system is poorer, so a lot of unit
cells are necessary to clearly demonstrate the interface state that decreases exponentially
away from the interface. According to the results of the numerical simulation, it is found
that if the structural parameters of B are fixed in the ABC structure, and we adjust only the
parameters of A and C layers to design the bandgap, then the simplest way to get the new
structure as the structure after topological phase transition is just to exchange the A and C
layers in the original ABC structure. We also found that the connection of two ABC
structures formed by this way gives us the most obvious localized effect of the interface
摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VI
表目錄 VIII
一、緒論 1
1-1光子晶體介紹 1
1-2 札克相(Zak phase) 3
二、層狀結構的理論分析 5
2-1 傳遞矩陣 5
2-1-1 如何利用傳遞矩陣來求得能帶結構 10
2-1-2 AB週期結構中的穿透率和反射率 14
2-1-3 矩陣的相似變換 16
2-1-4布洛赫定理(Bloch Theorem) 17
2-2 討論在AB週期結構中能帶反轉的拓樸特性和介面態 17
2-2-1 AB週期結構能帶的反轉現象 18
2-2-2討論在AB周期結構中的介面態 19
三、AB週期結構下的數據分析 21
3-1 AB週期結構能帶與電場分析 21
3-1-1 單一頻率情況下的電場 21
3-1-2多頻率情況下的電場 24
3-2 雙層週期結構下的札克相(Zak phase)數據分析 25
3-2-1 如何由電場分析札克相(Zak phase) 26
3-3 雙層週期結構下介面態分析 29
四、在多層ABC周期結構下的能帶反轉和介面態 32
4-1 多層ABC週期結構的傳遞矩陣 32
4-2 多層ABC週期結構的札克相(Zak phase)分析 35
4-2-1 ABC結構場圖的數據分析 37
4-2-2 ABC結構札克相(Zak phase)的數據分析 39
4-3 在多層ABC週期結構下的介面態分析 41
4-3-1結構的多寡對於介面態透射率的影響 44
4-3-2參數的選擇對介面態的影響 45
五、結論與未來展望 50
5-1 結論 50
5-2 未來展望 51
參考文獻 52
[1] S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486 (1987).
[2] E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 58, 2059 (1987).
[3] John D. Joannopouluos, Steven G. Johnson, Joshua. N. Winn, Robert. D. Meade, “Photonic Crystals Molding the Flow of Light”, Princeton University Press, 2th Ed (2008).
[4] C. Kittel, “Introduction to Solid State Physics”, Wiley, 8th Ed (2004).
[5] Daniel Greenberger, Klaus Hentschel, Friedel Weinert, “Compendium of Quantum Physics”, Springer, (2009).
[6] 蔡雅雯,吳杰倫,欒丕綱, 從量子霍爾效應到拓樸光子學與拓樸聲子學,科儀新知 211 期, 68 - 79 (2017).
[7] David J. Griffiths, “Introduction to Electrodynamics”, Pearson new international, 4th Ed (2013).
[8] J. Zak, “Berry’s phase for energy bands in solids”, Phys. Rev. Lett. 62, 2747 (1989).
[9] Meng Xiao, Z. Q. Zhang, and C. T. Chan, “Surface Impedance and Bulk Band Geometric Phases in One-Dimensional Systems”, Phys. Rev. X 4, 021017 (2014).
[10] Ka Hei Choi, C. W. Ling, K. F. Lee, Y. H. Tsang, and Kin Hung Fung, “Simultaneous multi-frequency topological edge modes between one-dimensional photonic crystals”, Optics letters 41,1644 (2016).
[11] Xi Shi, Chunhua Xue, Haitao Jiang, and Hong Chen, “Topological description for gaps of one dimensional symmetric all-dielectric photonic crystals”, Optics express 24, 18580 (2016).
[12] Weiwei Zhu, Ya-qiong Ding, Jie Ren, Yong Sun, Yunhui Li, Haitao Jiang, and Hong Chen, “Zak phase and band inversion in dimerized one-dimensional locally resonant metamaterials”, Phys. Rev. B 97, 195307 (2018).
[13] Wensheng Gao, Meng Xiao, Baojie Chen, Edwin Y. B. Pun, C. T. Chan, and Wing Yim Tam, “Controlling interface states in 1D photonic crystals by tuning bulk geometric phases”, Optics Letters 42, 1500 (2017).
[14] Xin Li, Yan Meng, Xiaoxiao Wu, Sheng Yan, Yingzhou Huang, Shuxia Wang ,and Weijia Wen, “Su-Schrieffer-Heeger model inspired acoustic interface states and edge states” ,Appl. Phys. Lett 113, 203501 (2018).
[15] Jianfei Yin, Massimo Ruzzene, Jihong Wen, Dianlong Yu, Li Cai & Linfeng Yue, “Band transition and topological interface modes in 1D elastic phononic crystals”, Scientific Reports 8, 6806 (2018)
[16] Degang Zhao, Meng Xiao, C. W. Ling, C. T. Chan, and Kin Hung Fung, “Topological interface modes in local resonant acoustic systems”, Phys. Rev. B 98, 014110 (2018).
[17] Zhiwang Zhang, Ying Cheng, Xiaojun Liu, and Johan Christensen, “Subwavelength multiple topological interface states in one-dimensional labyrinthine acoustic metamaterials”, Phys. Rev. B 99, 224104 (2019).
[18] Muhammad, Weijian Zhou, C.W. Lim, “Topological edge modeling and localization of protected interface modes in 1D phononic crystals for longitudinal and bending elastic waves”, International Journal of Mechanical Sciences 159, 359-372 (2019).
[19] 欒丕綱, 陳啟昌, 光子晶體: 從蝴蝶翅膀到奈米光子學 (2nd Ed.), 五南出版社 (第二版) (2010).
[20] Zhi-Yuan Li and Lan-Lan Lin, “Photonic band structures solved by a plane-wave-based transfer-matrix method”, Phys. Rev. E 67, 046607 (2013).
[21] Erwin Kreyszig, “Advanced engineering mathematics”, Wiley, 10th Ed (2010).
[22] J. Zak, “Symmetry criterion for surface states in solids”, Phys. Rev. B. 32, 4(1985).
[23] Li, Qiucui, and Xunya Jiang, “Singularity induced topological transition of different dimensions in one synthetic photonic system”, Optics Communications 440, 32-40 (2019).
[24] Hanying Deng, Xianfeng Chen, Nicolae C. Panoiu, and Fangwei Ye, “Topological surface plasmons in superlattices with changing sign of the average permittivity”, Optics Letters 41 ,4281 (2016).
[25] Ling Lu, John D. Joannopoulos & Marin Soljacic, “Topological photonics”, Nature Photonics volume 8, 821–829 (2014).
[26] Meng Xiao, Z. Q. Zhang, and C. T. Chan, “Unidirectional transmission in 1D nonlinear photonic crystal based on topological phase reversal by optical nonlinearity”, AIP Advances 7, 025203 (2017).
[27] Marcos Atala, Monika Aidelsburger, Julio T. Barreiro, Dmitry Abanin, Takuya Kitagawa, Eugene Demler and Immanuel Bloch, “Direct measurement of the Zak phase in topological Bloch bands”, Nature Physics 9, 795–800 (2013).
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔