(3.238.130.97) 您好!臺灣時間:2021/05/18 19:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃政文
研究生(外文):Chen-Wen Huang
論文名稱:利用高功率脈衝磁控濺鍍於(111)矽基板磊晶成長GaN/ZnO薄膜之研究
指導教授:陳昇暉
學位類別:碩士
校院名稱:國立中央大學
系所名稱:光電科學與工程學系
學門:工程學門
學類:電資工程學類
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:109
中文關鍵詞:氮化鎵氧化鋅濺鍍
相關次數:
  • 被引用被引用:0
  • 點閱點閱:26
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
目前成長單晶氮化鎵薄膜以有機金屬化學氣相沉積(MOCVD)及分子束磊晶(MBE)為主,有高溫以及高成本的問題,本論文將採用低溫以及低成本且可以大面積製造的高功率脈衝磁控濺鍍法(HiPIMS)取代有機金屬化學氣相沉積(MOCVD)成長氮化鎵薄膜。而用於 GaN 成長的基板材料的另一種有潛力的材料是矽(Si)。
使用矽作為成長 GaN 的基板具有許多優勢,例如:大尺寸,低成本以及在高製程溫度下的熱穩定性。但直接成長GaN於矽基板上,由於晶格常數的巨大不匹配(16.9%),因此需要尋找適當緩衝層來提升氮化鎵薄膜品質,而氧化鋅(ZnO)與氮化鎵之晶格常數僅相差(1.8%),因此本論文使用氧化鋅(ZnO)作為緩衝層,進而提升氮化鎵薄膜之結晶品質。
濺鍍氧化鋅緩衝層後,再進行爐管熱退火。由XRD以及SEM分析出,退火後之氧化鋅薄膜之結晶半高寬由0.201°降至0.182°,並且結晶顆粒變大,代表結晶品質提升,但表面粗糙度(RMS)也由3.59 nm提升至13.4 nm。
由SEM量測分析出,當氧化鋅緩衝層之晶粒越大,氮化鎵薄膜之晶粒也會越大。由TEM量測分析出,當氮化鎵薄膜沉積於氧化鋅緩衝層,氮化鎵之結晶方向會延著氧化鋅緩衝層之結晶方向(0002)成長。由上述之量測分析出,ZnO緩衝層之結晶品質越好,GaN薄膜之結晶品質也會隨之提升。因此本論文之未來工作必須解決ZnO緩衝層之表面粗糙度問題,進而提升氮化鎵薄膜之品質。
Metal organic chemical vapor deposition (MOCVD) is the most popular fabrication method for the crystalline GaN thin film. However, the disadvantages of MOCVD are its high process temperature and the high cost. In this study, a fabrication method high-power impulse magnetron sputtering(HiPIMS) with low-temperature and low-cost are applied to deposit GaN films.
Silicon is one of the attractive substrate materials for GaN, the deposition of thin films with the advantages of low cost and thermal stability at high growth temperatures. But due to the large lattice constant mismatch (16.9%), it is almost impossible to deposit a GaN thin film on the silicon substrate directly. A suitable buffer layer is necessary in between the GaN and the silicon substrate to improve the quality. The lattice constant difference between ZnO and GaN is only 1.8%. So ZnO was used in this research as the buffer layer to improve the crystalline quality of the GaN films.
After depositing the ZnO buffer layer, a thermal annealing process was applied. According to the XRD and SEM analysis, the FWHM of the annealed ZnO(0002) XRD spectrum was decreased from 0.201° to 0.182°, and the crystal grains became larger, indicating that the crystal quality was improved. However, the surface roughness (RMS) was also increased from 3.59 nm to 13.4 nm.
According to the SEM measurement and analysis, the larger the crystal grains of the ZnO buffer layer, the larger the crystal grains of the GaN film. According to the TEM measurement and analysis, when the GaN film was deposited on the ZnO buffer layer, the crystal direction of GaN could grow along the crystal direction (0002) of the ZnO buffer layer. Based on the above measurement and analysis, the better the crystalline quality of the ZnO buffer layer, the better the crystalline quality of the GaN thin film. Therefore, the future work of this research is to improve the surface roughness of the ZnO buffer layer after the annealing, and then it is possible to improve the quality of the GaN films.
目錄
摘要 i
目錄 v
圖目錄 VIII
表目錄 XI
第一章 緒論 1
1-1前言 1
1-2文獻回顧 2
1-3研究動機 4
第二章 基礎理論 8
2-1氮化鎵的基本性質 8
2-2氮化鎵之緩衝層介紹 8
2-3高功率脈衝磁控濺鍍製程系統 13
2-3-1高功率脈衝磁控電源 14
第三章 實驗機台架構與量測儀器之介紹 17
3-1製程設備介紹 17
3-1-1 磁控濺鍍機台介紹 17
3-1-2 爐管退火系統 18
3-2 薄膜製作流程 19
3-2-1 濺鍍緩衝層之氧化鋅薄膜製作流程 19
3-2-2 氮化鎵薄膜之製作流程 19
3-3分析儀器介紹 20
3-2-1 X-ray繞射儀 20
3-2-2掃描式電子顯微鏡 21
3-2-3 原子力顯微鏡(AFM) 22
第四章 實驗結果 23
4-1不同基板對氧化鋅薄膜之分析 23
4-1-1 不同基板對氧化鋅薄膜之薄膜結晶分析(XRD) 23
4-2改變儲能時間(OFF TIME)對氧化鋅薄膜之分析 25
4-2-1 薄膜結晶之分析(XRD) 25
4-2-2 薄膜表面與剖面之結晶分析(SEM) 27
4-3改變製程溫度對氧化鋅薄膜之分析 28
4-3-1 薄膜結晶之分析(XRD) 29
4-3-2 薄膜表面與剖面之薄膜結晶分析(SEM) 30
4-4改變功率對濺鍍氧化鋅薄膜之分析 31
4-4-1薄膜結晶之分析(XRD) 32
4-4-2薄膜剖面與表面分析(SEM) 33
4-4-3薄膜表面之粗糙度分析(AFM) 34
4-5改變氧氣通量對濺鍍氮化鎵在氧化鋅薄膜上之分析 36
4-5-1薄膜結晶之分析(XRD) 37
4-5-2薄膜剖面與表面分析(SEM) 38
4-5-3薄膜表面之粗糙度分析(AFM) 40
4-6調變大氣退火溫度對氧化鋅之薄膜分析 42
4-6-1薄膜結晶之分析(XRD) 42
4-6-2薄膜剖面與表面分析(SEM) 43
4-6-3薄膜表面之粗糙度分析(AFM) 46
4-7改變工作壓力對氮化鎵在不同薄膜上之分析 47
4-7-1 改變工作壓力對氮化鎵薄膜在不同基板上之XRD量測分析 48
4-7-2薄膜剖面與表面分析(SEM) 52
4-7-3 薄膜表面之粗糙度分析(AFM) 54
4-7-4 薄膜結晶之分析(TEM) 56
4-8改變氣體比例氮化鎵在不同薄膜上之分析 63
4-8-1改變氣體比例薄膜結晶之分析(XRD) 63
4-8-2薄膜剖面與表面分析(SEM) 68
4-8-3薄膜表面之粗糙度分析(AFM) 69
4-8-4薄膜結晶分析(TEM) 71
4-9 改變儲能時間(OFF TIME)對氮化鎵薄膜之分析 76
4-9-1 改變儲能時間對氮化鎵薄膜之結晶分析(XRD) 76
4-9-2 薄膜剖面與表面分析(SEM) 79
4-9-3 薄膜表面之粗糙度分析(AFM) 81
4-10 改變製程溫度對氮化鎵在不同薄膜上之分析 84
4-10-1 改變製程溫度對氮化鎵薄膜之結晶分析(XRD) 84
第五章 結論與未來研究 87
5-1 結論 87
5-2 未來研究 88
參考文獻 89
[1] H. Shin, K. Jeon, Y. Jang, “Comparison of the Microstructural Characterizations of GaN Layers Grown on Si (111) and on Sapphire,” Journal of the Korean Physical Society, 63(8), 1621-1624(2013)
[2] J. Ross, M. Rubin, “High-quality GaN grown by reactive sputtering,” Materials. Lett, 12(4), 215-218 (1991)
[3] H. Ishikawa, K. Yamamoto, T. Egawa, T. Soga, T. Jimbo, M. Umeno, “Thermal stability of GaN on (111) Si substrate,” J. Cryst. Growth, 189, 178-182 (1998)
[4] H. W. Kim, N. H. Kim, “Preparation of GaN film on ZnO buffer layers by rf magnetron sputtering.” Applied Suface Science, 236(1), 192-197 (2004)
[5] Y. Honda, M. Okano, M. Yamaguchi, N. Sawaki, “Uniform growth of GaN on AlN templated (111)Si substrate by HVPE,” Phys. Status Solidi C, 2, 2225-2178 (2005)
[6] H. W. Kim, S. H. Shim, C. Lee,” Annealing Effects on GaN/ZnO/Si Structures Prepared by RF Magnetron Sputtering,” Recent Developments in Advance Materials and Processes, 518, 137-142 (2006)
[7] Nola Li, E. H. Park, Y. Huang, S. Wang, A. Valencia, B. Nemeth, J. Nause, I. Ferguson, “Growth of GaN on ZnO for solid state lighting applications,” SPIE, 6337, (2006)
[8] S. Tripathy, V. K. X. Lin, S. B. Dolmanan, J. P. Y. Tan, R. S. Kajen, L. K. Bera, S. L. Teo, M. K. Kumar, S. Arulkumaran, G. I. Ng, S. Vicknesh, S. Todd, W. Z. Wang, G. Q. Lo, H. Li, D. Lee, and S. Han, “AlGaN/GaN two-dimensional-electron gas heterostructures on 200mm diameter Si(111),” Appl. Phys. Lett, 101, 082110, (2012)
[9] N. Li, “GaN on ZnO: A new approach to solid state lighting,” (2009)
[10] A. Kobayashi, S. Kawano, Y. Kawaguchi, J. Ohta, H. Fujioka, “Room temperature epitaxial growth of m -plane GaN on lattice-matched ZnO substrates” Applied Physics Letters,90(4), 041908 (2007)
[11] N. L. Barr, E. H. Park, Y. Huang, S. Wang,“Growth of GaN on ZnO for Solid State Lighting Applications” SPIE, 425, 6337, (2006)
[12] H. P. Maruska, J. J. Tietjen “The preparation and properties of vapor deposited single-crystalline GaN,” Applied Physics Letters, 15(10), 327-329 (1969)
[13] M. Wittmer, J. Noser, H. Melchior, “Oxidation kinetics of TiN thin films,” Journal of Applied Physics, 52(11), 6659-6664 (1981).
[14] R. K. Waits, “Edison’s vacuum coating patents,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 19(4), 1666- 1673 (2001)
[15] V. Kouznetsov, K. Macák, J. M. Schneider, “A novel pulsed magnetron sputter technique utilizing very high target power densities,” Surface and Coatings Technology, 122(2-3), 290-293 (1999)
[16] A. P. Ehiasarian, R. New, W. D. Münz, “Influence of high power densities on the composition of pulsed magnetron plasmas." Vacuum,” 65(2), 147-154 (2002)
[17] J. Alami, “Plasma Characterization & Thin Film Growth and Analysis in Highly Ionized Magnetron Sputtering,” Diss. Institutionen för fysik, kemi och biologi, 2005.
[18] K. Sarakinos, J. Alami, S. Konstantinidis, "High power pulsed magnetron sputtering: A review on scientific and engineering state of the art." Surface and Coatings Technology, 204(11), 1661-1684 (2010)
[19] H. Takikawa, H. Tanoue, "Review of cathodic arc deposition for preparing droplet-free thin films," IEEE Transactions on Plasma Science, 35(4), 992-999 (2007)
[20] S. Schmidt, Z. Czigány, G. Greczynski, J. Jensen, L. Hultman, "Ion mass spectrometry investigations of the discharge during reactive high power pulsed and direct current magnetron sputtering of carbon in Ar and Ar/N2." Journal of Applied Physics, 112, 013305 (2012)
[21] D. J. Christie, F. Tomasel, W. D. Sproul, D. C. Carter, "Power supply 84 with arc handling for high peak power magnetron sputtering." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 22(4), 1415-1419 (2004)
[22] 林麗娟,「X 光繞射原理及其應用」,工業材料,86,100-109,
2000
[23] 王國強,「以反應式脈衝直流磁控濺鍍法通入 C2H2 反應氣體製備
AZO 薄膜的光電特性之研究」,國立中興大學,碩士論文
[24] C. Y. Tsai, J. D. Lai, S. W. Feng, “Growth and characterization of textured well-faceted ZnO on planar Si(100), planar Si(111), and textured Si(100) substrates for solar cell applications,” Beilstein Journal of Nanotechnology, 8, 1939-1945(2017)
[25] Zhang, Haitao, Chen, Jianyuan, Cherng, Jyhshiarn , “The c-axis orientation ZnO by ICP enhanced HiPIMS at ambient temperature” , Journal of Crystal Growth, 453, 138-142 (2016)
[26] 許哲隆,「以氮化鎵為基板之表面聲波元件之研製」,國立中央大學,碩士論文
[27] 金開聖,「氧化鋅薄膜分析與發光二極體元件製作」 ,中華技術學院 , 碩士論文
[28] H. J. Ko, M. S. Han, Y. S. Park, “Improvement of the quality of ZnO substrates by annealing,” Journal of Crystal Growth, 269(2-4), 493-498 (2004).
[29] H. W. Kim, S. H. Shim, C. Lee, ”Annealing Effects on GaN/ZnO/Si Structures Prepared by RF Magnetron Sputtering,” Recent Developments in Advance Materials and Processes, 518, 137-142 (2006)
[30] J. Chen, S. M. Zhang, B. S. Chang, ”Influence of growth pressure of a GaN buffer layer on the properties of MOCVD GaN,” Science in China Series E-Technological Science, 46(6), 620-626 (2003)
[31] Piotr Caban, Wlodek Strupinski, Jan Szmidt, ”Effect of growth pressure on coalescence thickness and crystal quality of GaN deposited on 4H–SiC,” Journal of Crystal Growth, 315(1), 168-173 (2011)
[32] W. K. Wang, M. C. Jiang, ”Growth behavior of hexagonal GaN on Si(100) and Si(111) substrates prepared by pulsed laser deposition,” Japanese Journal of Applied Physics, 55(9), 095503 (2016)
[33] P. K. Song, E. Yoshida, Y. Sato, “GaN Films Deposited by DC Reactive Magnetron Sputtering,” Japanese Journal of Applied Physics, 43(2A), L164-L166 (2004)
[34] R. V. Stuart , Vacuum Technology, Thin Films, and Sputtering: An Introduction , (1983)
電子全文 電子全文(網際網路公開日期:20250901)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top