(3.236.231.61) 您好!臺灣時間:2021/05/11 16:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳智圓
研究生(外文):Chih-Yuan Chen
論文名稱:基於三元網路之360度視訊HEC格式之 VVC畫面間位元率控制
論文名稱(外文):Triplet Network Based VVC Interframe Rate Control for 360-degree Videos with HEC Format
指導教授:唐之瑋
指導教授(外文):Chih-Wei Tang
學位類別:碩士
校院名稱:國立中央大學
系所名稱:通訊工程學系
學門:工程學門
學類:電資工程學類
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:87
中文關鍵詞:360度視訊HECVVC畫面間編碼位元率控制三元網路損失函數
外文關鍵詞:360 degree videoHECVVCInterframe codingrate controlTriplet Networkloss function
相關次數:
  • 被引用被引用:0
  • 點閱點閱:53
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
360度視訊能帶給觀看者身臨其境的體驗,然而,其存在大量資料的儲存與傳送問題,因此360度視訊編碼的位元率控制(rate control)非常重要。現有的360度視訊編碼方案將360度視訊投影至二維平面後再編碼,其中,複合式等角度立方體投影(hybrid equiangular cubemap, HEC)因幾何失真較為均勻,編碼效能較佳。目前最新視訊編碼標準多功能視訊編碼(Versatile Video Coding, VVC)的參考軟體採用基於R-λ模型之位元率控制(rate control),其編碼樹單元(coding tree unit, CTU)層的位元分配(bit allocation),根據前一個已編碼且同一畫面階層(frame level)畫面的同位置(co-located) CTU的更新後參數,為當前CTU進行位元分配,但有時無法達到最佳的分配。因此,本論文提出以三元卷積神經網路(Triplet CNNs Network)為基礎的畫面間編碼之位元率控制演算法,並提出同時考量R-λ模型的參數預測誤差與λ預測誤差之損失函數(loss function),對HEC格式之CTU進行R-λ模型的參數預測。實驗結果顯示,本論文所提方案相較於VVC的參考軟體VTM-3.0的位元率控制方案與現有考量360度視訊投影格式非均勻特性的CTU層位元率控制方案,平均可達更低的位元誤差,但不降低rate-distortion效能。
360-degree videos can provide viewers immersive experience. However, storage and transmission of the large amount of 360-degree videos is a great challenge. Thus rate control plays an important role for 360-degree video coding. In the existing encoders of 360-degree videos, 360-degree videos are projected onto the two-dimensional image plane before encoding. Among projection formats, hybrid equiangular cubemap (HEC) projection enables better coding performance. R-λ model based rate control is adopted by the video coding standard Versatile Video Coding (VVC) reference software. In coding tree unit (CTU) level bit allocation, the updated parameters of R-λ model of the co-located CTU in the last coded frame at the same frame level are adopted for bit allocation of the current CTU. However, these parameters sometimes may not achieve optimal bit allocation. Therefore, this thesis proposes a Triplet Network based interframe rate control scheme to predict parameters of the R-λ model of CTUs for HEC format. In addition, the loss function that considers both prediction errors of parameters of the R-λ model and λ value is proposed. Experimental results show that the proposed scheme outperforms both the original rate control scheme of the reference software of VVC (VTM-3.0) and an existing rate control scheme that considers the unequal characteristics of 360-degree videos on accuracy of bits mismatch without degradation of rate-distortion performance.
摘要 I
Abstract II
誌謝 IV
目錄 V
圖目錄 VII
表目錄 X
第一章 緒論 1
1.1 前言 1
1.2 研究動機 1
1.3 研究方法 3
1.4 論文架構 3
第二章 多功能視訊編碼(Versatile Video Coding)介紹 4
2.1 多功能視訊編碼(VVC)簡介 4
2.1.1 多功能視訊編碼(VVC)架構 4
2.1.2 編碼樹單元劃分(CTU Partitioning) 5
2.2 VVC支援之360度視訊編碼技術 7
2.2.1 360度視訊投影格式 7
2.2.2 360度視訊客觀品質衡量 12
2.3 總結 15
第三章 位元率控制技術現況 16
3.1 位元率控制基本原理 16
3.1.1 位元分配(Bit Allocation) 17
3.1.2編碼參數決定(Determination of coding parameters) 17
3.2 基於R-λ模型之位元率控制演算法 17
3.2.1 R-λ模型 18
3.2.2 CTU層位元分配 20
3.3 360度視訊編碼之位元率控制 22
3.4 以深度學習為基礎之位元率控制方案 25
3.5 總結 27
第四章 本論文提出之360度視訊編碼 位元率控制方案 28
4.1 本論文採用之編碼預測架構 28
4.2 HEC格式CTUs之R-λ Model曲線擬合 30
4.3 本論文提出之位元分配方案流程 40
4.4 本論文提出基於三元卷積神經網路(Triplet Network)之CTU層位元分配方法 41
4.4.1 三元卷積神經網路架構 41
4.4.2 本論文所提出之損失函數(Loss Function) 43
4.4.3 CTU level位元分配 44
4.5 總結 44
第五章 實驗結果與分析 45
5.1 實驗環境與參數設定 45
5.2 本論文提出方案之實驗結果與分析 48
5.3 總結 65
第六章 結論與未來展望 66
參考文獻 67
符號表 70
[1] ISO/IEC JTC1/SC29/WG11, “Description of 360° video coding technology proposal by MediaTek,” Doc. JVET-J0019, San Diego, Apr. 2018.
[2] ISO/IEC JTC1/SC29/WG11, “Algorithm description for versatile video coding and test model 3,” Doc. JVET-L1002, Macao, Oct. 2018.
[3] G. J. Sullivan and T. Wiegand, “Rate-distortion optimization for video compression,” IEEE Signal Processing Magazine, Vol. 15, No. 6, pp. 74–90, Nov.1998.
[4] B. Li, H. Li, L. Li, and J. Zhang, “λ domain rate control algorithm for high efficiency video coding,” IEEE Trans. Image Process., Vol.23, No. 9, pp. 3841–3854, Sep. 2014.
[5] Y. Liu, M. Xu, C. Li, S. Li, and Z. Wang, “A novel rate control scheme for panoramic video coding,” in Proc. IEEE International Conference on Multimedia and Expo, pp. 691-696, July 2017.
[6] L. Li, N. Yan, Z. Li, S. Liu, and H. Li, “λ domain perceptual rate control for 360-degree video compression,” IEEE Journal of Selected Topics in Signal Processing, Vol. 14, No. 1, pp.130-145, Jan, 2020.
[7] ISO/IEC JTC1/SC29/WG11, “Rate control for VVC,” Doc. JVET-K0390, Ljubljana, July 2018.
[8] ISO/IEC JTC1/SC29/WG11, “AHG9-related: CNN-based lambda-domain rate control for intra frames,” Doc. JVET-M0215, Marrakech, Jan. 2019.
[9] VTM-3.0, https://vcgit.hhi.fraunhofer.de/jvet/VVCSoftware_VTM/-/tags/VTM-3.0
[10] F. Duanmu, Y. Mao, S. Liu, S. Srinivasan, and Y. Wang. “A subjective study of viewer navigation behaviors when watching 360-degree videos on computers,” in Proc. IEEE International Conference on Multimedia and Expo, pp. 1-6, USA, July 2018.
[11] M. Wien, J.M. Boyce, T. Stockhammer, and W.-H. Peng, “Standardization status of immersive video coding,” IEEE Journal on Emerging and Selected Topics in Circuits and Systems, Vol. 9, No. 1, pp. 5–17, Mar. 2019.
[12] G. J. Sullivan, J.R. Ohm, W.J. Han, And T. Wiegand, “Overview of the high efficiency video coding (HEVC) standard,” IEEE Trans. Circuits and Systems for Video Technology, Vol. 22, No. 12, pp. 1649-1668, Sep. 2012.
[13] JVET 360Lib, https://jvet.hhi.fraunhofer.de/svn/svn_360Lib
[14] ISO/IEC JTC1/SC29/WG11, “Algorithm descriptions of projection format conversion and video quality metrics in 360Lib version 9,” Doc. JVET-M1104, Marrakech, Jan. 2019.
[15] Equirectangular projection, https://en.wikipedia.org/wiki/Equirectangular_projection
[16] Cubemap, https://en.wikipedia.org/wiki/Cube_mapping
[17] ISO/IEC JTC1/SC29/WG11, “AHG8: A study on Equi-Angular Cubemap projection (EAC),” Doc. JVET-G0056, Torino, July 2017.
[18] ISO/IEC JTC1/SC29/WG11, “CE13: Modified Cubemap Projection in JVET-J0019 (Test 5),” Doc. JVET-K0131, Ljubljana, July 2018.
[19] ISO/IEC JTC1/SC29/WG11, “AhG8: Suggested testing procedure for 360-degree video,” Doc. JVET-D0027, Chengdu, Oct. 2016.
[20] L. Li, B. Li, H. Li, and C. W. Chen, “λ domain optimal bit allocation algorithm for high efficiency video coding,” IEEE Transactions on Circuits and Systems for Video Technology, Vol. 28, No.1, pp. 130–142, Jan. 2018.
[21] HM, https://vcgit.hhi.fraunhofer.de/jct-vc/HM/-/tags
[22] B. Li, L. Song, R. Xie, and W. Zhang, “Weight-based bit allocation scheme for VR videos in HEVC,” in Proc. IEEE Visual Communications and Image Processing, pp. 1-4, Dec. 2017.
[23] Y. Li, B. Li, D. Liu, and Z. Chen. “A convolutional neural network-based approach to rate control in hevc intra coding,” in Proc. IEEE Visual Communications and Image Processing, pp. 1-4, Dec. 2017.
[24] M. Santamaria, E. Izquierdo, S. Blasi, and M. Mrak, “Estimation of rate control parameters for video coding using CNN,” in Proc. IEEE Visual Communications and Image Processing, pp. 1-4, Dec. 2018.
[25] ISO/IEC JTC1/SC29/WG11, “High ffficiency video coding (HEVC) test model 15 (HM15) encoder description,” Doc. JCTVC-Q1002, Valencia, Apr. 2014.
[26] ISO/IEC JTC1/SC29/WG11, “AHG 3 Recommended settings for HM,” Doc. JCTVC-X0038, Geneva, June 2014.
[27] Y. Guo, Y. Liu, A. Oerlemans, S. Lao, S. Wu, and M. S. Lew, “Deep learning for visual understanding: A review,” Neurocomputing, Vol. 187, pp. 27–48, Apr. 2016.
[28] ISO/IEC JTC 1/SC 29/WG 11, “JVET common test conditions and evaluation procedures for 360° video,” Doc. JEVT-L1012, Macau, Oct. 2018.
[29] ISO/IEC JTC 1/SC 29/WG 11, “AHG8: InterDigital test sequences for virtual reality video coding,” Doc. JEVT-D0039, Chengdu, Oct. 2016.
[30] Github, https://github.com/xiaoliqiu/360_Rate_Control
[31] G. Bjontegaard, “Calculation of average PSNR differences between RD-Curves,” Doc. VCEG-M33, Austin, US, April 2001.
電子全文 電子全文(網際網路公開日期:20230801)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔