(34.229.64.28) 您好!臺灣時間:2021/05/06 06:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蔡佩名
研究生(外文):Pei-Ming Cai
論文名稱:低複雜度之相差空間調變架構
論文名稱(外文):Low-Complexity Differential Spatial Modulation Schemes
指導教授:魏瑞益
指導教授(外文):Ruey-Yi Wei
學位類別:碩士
校院名稱:國立中央大學
系所名稱:通訊工程學系
學門:工程學門
學類:電資工程學類
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:63
中文關鍵詞:相差空間調變區塊編碼映射組低複雜度
相關次數:
  • 被引用被引用:0
  • 點閱點閱:41
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
相差空間調變是一種不需要前導訊號和通道估計的空間調變,但是相差空間調變原始所用的非同調最大可能性檢測器非常複雜。在本論文中,我們提出了兩個低複雜度之相差空間調變架構,其一是針對傳送多樣性為2的區塊編碼之相差空間調變,來降低解碼複雜度的改良設計;另一個則是改良了相差空間調變的位元映射,成為具有多個位元映射組,且仍保持全速率的相差空間調變。與原方法相比,採用我們提出之複雜度的架構後,均將能應用於更多傳送天線的系統,並且同時還改善了錯誤性能。其中對於區塊編碼之相差空間調變的設計可分為,降低複雜度的檢測器,以及與檢測器匹配的複數值天線索引矩陣,雖此檢測器之錯誤性能略差於非同調最大可能性檢測器,但整體之錯誤性能仍優於原方法;而所設計的多個位元映射組,可應用於任一相差空間調變方案的位元映射步驟,來增加電腦模擬時映射之位元數的上限,同時些微地改善錯誤性能。
Differential Spatial modulation (DSM) is a kind of Spatial modulation technique that does not need pilot symbols and channel estimation. The original noncoherent detection for DSM is very complicated.In this thesis, we propose two low-complexity DSM schemes. One of them is an improved design to reduce the decoding complexity for block coded DSM (BC-DSM) with a transmission diversity of 2. The other is the bit-mapping of full-rate DSM with multiple mapping groups.Compared with the original method, our low-complexity schemes are suitable for systems with many transmission antennas, and have better error performance. The design of BC-DSM can be divided into a detector with reduced complexity, and complex-valued antenna-index matrices that matching with the detector. Although the error performance of this detector is slightly worse than the noncoherent maximum-likelihood detector, the overall error performance is still better than the original method.The designed multiple mapping groups can be applied to the bit-mapping step of any DSM to increase the upper limit of the number of mapped bits during the computer simulation, while slightly improving the error performance.
摘要.........................................................i
Abstract....................................................ii
致謝.......................................................iii
目錄........................................................iv
圖目錄......................................................vi
表目錄.....................................................vii
第一章 緒論..................................................1
1.1背景與研究動機............................................1
1.2內容介紹..................................................2
第二章 相關背景回顧...........................................3
2.1相差空間調變..............................................3
2.2文獻[9]提出的低複雜度非同調最大可能性檢測器..................5
2.3文獻[5]位元映射...........................................7
第三章 區塊編碼之相差空間調變的低複雜度檢測.....................8
3.1文獻[21]傳送多樣性為2的區塊編碼之相差空間調變回顧............8
3.2區塊編碼之相差空間調變的低複雜度檢測.......................12
3.2.1傳送端設計.............................................12
3.2.2接收端設計.............................................16
3.2.3模擬結果與探討.........................................18
3.2.4小節..................................................23
第四章 巨量天線的低複雜度相差空間調變方案......................24
4.1提出的全速率相差空間調變方案[20]...........................24
4.1.1位元映射[20]...........................................24
4.1.2新的低複雜度檢測演算法[20]..............................27
4.1.3提出的檢測法與其它現有之檢測技術的比較[20]...............30
4.1.4修改規則與範例:含有單一映射組的相差空間調變[20]..........31
4.2用於巨量傳送天線的多映射組之安排,以全映射DSM實現...........34
4.2.1多映射組的分組安排......................................34
4.2.2理想搜尋的分組與全速率映射組列表.........................38
4.2.3全映射DSM與檢測之策略[20]...............................43
第五章 結論.................................................50
參考文獻....................................................51
[1] R. Mesleh, H. Haas, S. Sinanovic, C. Ahn, and S. Yun, ‘‘Spatial modulation,’’ IEEE Trans. Veh. Technol., vol. 57, no. 4, pp. 2228–2242, Jul. 2008.
[2] J. Jeganathan, A. Ghrayeb, and L. Szczecinski, ‘‘Spatial modulation: Optimal detection and performance analysis,’’ IEEE Commun. Lett., vol. 12, no. 8, pp. 545–547, Aug. 2008.
[3] J. Jeganathan, A. Ghrayeb, L. Szczecinski, and A. Ceron, ‘‘Space shift keying modulation for MIMO channels,’’ IEEE Trans. Wireless Commun., vol. 8, no. 7, pp. 3692–3703, Jul. 2009.
[4] M. Renzo, H. Haas, and P. Grant, ‘‘Spatial modulation for multiple-antenna wireless systems: A survey,’’ IEEE Commun. Mag., vol. 49, no. 12, pp. 182–191, Dec. 2011.
[5] Y. Bian, X. Cheng, M. Wen, L. Yang, H. V. Poor, and B. Jiao, ‘‘Differential spatial modulation,’’ IEEE Trans. Veh. Technol., vol. 64, no. 7, pp. 3262–3268, Jul. 2015.
[6] N. Ishikawa and S. Sugiura, ‘‘Unified differential spatial modulation,’’ IEEE Wireless Commun. Lett., vol. 3, no. 4, pp. 337–340, Aug. 2014.
[7] M. Wen, X. Cheng, Y. Bian, and H. V. Poor, ‘‘A low-complexity near-ML differential spatial modulation detector,’’ IEEE Signal Process. Lett., vol. 22, no. 11, pp. 1834–1838, Nov. 2015.
[8] Z. Li, X. Cheng, S. Han, M. Wen, L.-Q. Yang, and B. Jiao, ‘‘A low-complexity optimal sphere decoder for differential spatial modulation,’’ in Proc. IEEE Global Commun. Conf. (GLOBECOM), San Diego, CA, USA, Dec. 2015, pp. 1–6.
[9] R. Y. Wei and T. Y. Lin, ‘‘Low-complexity differential spatial modulation,’’ IEEE Wireless Commun. Lett., vol. 8, no. 2, pp. 356–359, Apr. 2019.
[10] L. Xiao, P. Yang, X. Lei, Y. Xiao, S. Fan, S. Li, and W. Xiang, ‘‘A low-omplexity detection scheme for differential spatial modulation,’’ IEEE Commun. Lett., vol. 19, no. 9, pp. 1516–1519, Sep. 2015.
[11] N. Ishikawa and S. Sugiura, ‘‘Rectangular differential spatial modulation for open-loop noncoherent massive-MIMO downlink,’’ IEEE Trans. Wireless Commun., vol. 16, no. 3, pp. 1908–1920, Mar. 2017.
[12] B. M. Hochwald and W. Sweldens, ‘‘Differential unitary space-time modulation,’’ IEEE Trans. Commun., vol. 48, no. 12, pp. 2041–2052, Dec. 2000.
[13] C. Gao, A. M. Haimovich, and D. Lao, ‘‘Multiple-symbol differential detection for MPSK space-time block codes: Decision metric and performance analysis,’’ IEEE Trans. Commun., vol. 54, no. 8, pp. 1502–1510, Aug. 2006.
[14] H. Leib, ‘‘Data-aided noncoherent demodulation of DPSK,’’ IEEE Trans. Commun., vol. 43, nos. 2–4, pp. 722–725, Feb. 1995.
[15] R. Rajashekar, N. Ishikawa, S. Sugiura, K. V. S. Hari, and L. Hanzo, ‘‘Full-diversity dispersion matrices from algebraic field extensions for differential spatial modulation,’’ IEEE Trans. Veh. Technol., vol. 66, no. 1, pp. 385–394, Jan. 2017.
[16] R. Rajashekar, C. Xu, N. Ishikawa, S. Sugiura, K. V. S. Hari, and L. Hanzo, ‘‘Algebraic differential spatial modulation is capable of approaching the performance of its coherent counterpart,’’ IEEE Trans. Commun., vol. 65, no. 10, pp. 4260–4273, Oct. 2017.
[17] C. Xu, R. Rajashekar, N. Ishikawa, S. Sugiura, and L. Hanzo, ‘‘Single-RF index shift keying aided differential space–time block coding,’’ IEEE Trans. Signal Process., vol. 66, no. 3, pp. 773–788, Feb. 2018.
[18] C. Xu, P. Zhang, R. Rajashekar, N. Ishikawa, S. Sugiura, L. Wang, and L. Hanzo, ‘‘Finite-cardinality single-RF differential space-time modulation for improving the diversity-throughput tradeoff,’’ IEEE Trans. Commun., vol. 67, no. 1, pp. 318–335, Jan. 2019.
[19] B. L. Hughes, ‘‘Differential space-time modulation,’’ IEEE Trans. Inf. Theory, vol. 46, no. 7, pp. 2567–2578, Nov. 2000.
[20] R. Y. Wei, “Low-complexity differential spatial modulation schemes for a lot of antennas,’’ IEEE Access, vol. 8, pp. 63725-63734, 2020.
[21] 蔡譯緯, “相差空間調變的進階結果,” 國立中央大學通訊工程研究所,碩士論文, 六月.2019
[22] 許嘉瑀, “籬柵編碼之相差空時調變的碼搜尋,” 國立中央大學通訊工程研究所,碩士論文, 六月.2016
[23] M. Tao and R. S. Cheng, “Trellis-coded differential unitary space-time modulation over flat fading channels,” IEEE Trans. Commun., pp. 587–596, Apr. 2003.
[24] G.Ungerboeck, “Trellis-coded modulation with redundant signal sets-part I: introduction, “IEEE Commun. Mag., vol. 25, no. 2, pp. 5-11, Feb. 1987.
[25] R. Rajashekar, N. Ishikawa, S. Sugiura, K. V. S. Hari, and L. Hanzo,“Full-diversity dispersion matrices from algebraic field extensions for differential spatial modulation,” IEEE Trans. Veh. Technol., vol. 66, no. 1, pp. 385–394, Jan. 2017.
[26] R. Y. Wei and J. A. Ritcey, “Differential trellis coded modulation with state dependent mappings,” Asilomar Conference on Signals, Systems, and Computers, CA, USA, Nov. 2014.
[27] 曾紹維, “差分空時籬柵碼,” 國立中央大學通訊工程研究所,碩士論文, 七月. 2014.
電子全文 電子全文(網際網路公開日期:20210801)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔