(3.236.222.124) 您好!臺灣時間:2021/05/13 01:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:羅宗益
研究生(外文):Zong-Yi Luo
論文名稱:於下行鏈路NOMA系統之即時功率分配
論文名稱(外文):Enhanced Real-Time Power Allocation on Downlink NOMA
指導教授:林嘉慶林嘉慶引用關係
指導教授(外文):Jia-Ching Lin
學位類別:碩士
校院名稱:國立中央大學
系所名稱:通訊工程學系
學門:工程學門
學類:電資工程學類
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:67
中文關鍵詞:非正交多重存取技術正交多重存取技術連續干擾消除使用者分群功率分配瑞雷通道
外文關鍵詞:NOMAOMASICUser GroupingPower AllocationRayleigh Channel
相關次數:
  • 被引用被引用:0
  • 點閱點閱:32
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,全世界對於資料的需求正以驚人的速度持續成長。無論身在何處,我們都需要保持連網,並期待無接縫的豐富內容服務。目前的裝置使用越來越多的資料,具備網際網路功能的裝置數量也越來越可觀,現有網路基礎架構確實需要重大的改變,才能追上需求的遽增。在目前的 4G LTE (OFDMA) 網路中,一般要求自我干擾迴避採用的是嚴格基於時間的方法,這導致了較高的功耗,並嚴重浪費控制平面傳訊資源。目前正在密集進行評估可取代目前使用之 OFDM 的 5G 抗干擾存取方案。更有效率的正交方案,例如 FBMC、UFMC 或 GFMD,可更有效地利用頻譜,也是未來 5G 存取頻波形的理想候選技術。一般而言,正交傳輸可避免自我干擾,如此可帶來較高的系統容量。但是,若要快速存取小型酬載,將正交資源指派至不同使用者的程序可能需要大量的傳訊並導致額外的延遲。因此,目前也考慮採用支援非正交存取以補足正交存取。這些例子包括非正交多重存取 (NOMA) 與稀疏編碼多重存取 (SCMA)。本文專注討論於 NOMA 方面。在使用 NOMA 時,接收端必須考慮到消除干擾的問題,目前較常見的方法有連續消除干擾 (Successive Interference Cancellation, SIC)和聯合偵測 (Joint-detection),不管使用哪種方法都會增加接收端的運算複雜度且更加耗電,其中 SIC 對使用者的傳送功率尤為敏感,假若使用者的功率相當,SIC 就很難運作,正常的消除干擾。本文提出即時功率分配演算法 (Enhanced real-time power allocation)來提升在使用者功率相當時的傳送品質,並於模擬顯示,在運用演算法後,可以在不變動系統通道容量的前提下,降低接收的錯誤率,改善 SIC 因為使用者功率差,所造成的位元錯誤率 (bit error rate, BER)提升。
In recent years, the world's demand for data has continued to increase at an alarming rate. No matter where we are, we need to stay in touch and look forward to a seamless and rich service. Current devices use more and more data, and the number of Internet-enabled devices is also increasing. The existing network infrastructure does require major changes to adapt to growing demand. In the current 4G LTE (OFDMA) network, a time-based method is generally required to avoid self-interference, which results in higher power consumption and a serious waste of control plane communication resources. An intensive evaluation is currently under way to replace the currently used OFDM 5G anti-interference access scheme. More efficient orthogonal schemes, such as FBMC, UFMC or GFMD, can make more efficient use of spectrum and are also ideal candidates for future 5G access frequency waveforms. Generally speaking, orthogonal transmission can avoid self-interference, which can bring higher system capacity. However, to quickly access small payloads, processes that assign orthogonal resources to different users may require a large amount of messaging and cause additional delays. Therefore, it is currently considered to support non-orthogonal access to complement orthogonal access. Examples include non-orthogonal multiple access (NOMA) and sparse code multiple access (SCMA). This thesis focuses on NOMA. To transmit each UE’s signal, the base station uses different transmission power and add them together which method is also known as power domain. Hence, every UE’s data can be transmitted in the same spectrum at the same time. But with NOMA, receivers have to face interference cancellation problem. Currently, the common method to solve the problem are successive interference cancellation (SIC) and joint-detection. No matter which method you use, they always increase the computation complexity of receiver side and consume more electricity. SIC is very sensitive to transmission power. If the transmission power of each UE is almost equivalent, SIC cannot cancel interference completely. In this paper, we propose a Enhanced real-time power allocation algorithm to improve the transmission performance when UEs’ transmission power is almost equivalent. Simulation results show that after introduce algorithm, it can reduce error rate at receiver side and improve SIC performance without changing any system channel capacity.
目錄
摘要.......................................................................................................................................................... i
Abstract ................................................................................................................................................... ii
致謝........................................................................................................................................................ iii
目錄........................................................................................................................................................ iv
圖目錄.................................................................................................................................................... vi
表目錄................................................................................................................................................... vii
Chapter 1 導論..................................................................................................................................... 1
1.1 研究背景與演進 (Background and Evolution) ...................................................................... 1
1.1.1 連續干擾刪除(Successive Interference Cancellation; SIC).................................... 3
1.1.2 使用者的功率分配(Power Allocation; PA)................................................................. 3
1.2 研究動機 (Motivation) ........................................................................................................... 4
1.3 論文大綱 (Thesis Outline)...................................................................................................... 5
Chapter 2 系統模型介紹..................................................................................................................... 6
2.1 正交多重接取技術 (Orthogonal Multiple Access ;OMA)..................................................... 6
2.2 非正交多重接取技術 (NOMA)............................................................................................. 8
2.3 NOMA 系統數學模型.............................................................................................................. 9
2.3.1 NOMA 傳送端............................................................................................................ 9
2.3.2 NOMA 接收端.......................................................................................................... 10
2.3.3 NOMA 之通道容量.................................................................................................. 11
2.4 通道衰減................................................................................................................................ 14
2.4.1 多重路徑衰減的產生................................................................................................. 14
2.4.2 多重路徑之類型......................................................................................................... 14
2.4.3 多重路徑通道與接收端訊號..................................................................................... 15
v
2.4.4 通道的相關函數......................................................................................................... 15
2.4.5 通道的同調頻寬......................................................................................................... 16
2.4.6 通道的同調時間......................................................................................................... 17
2.4.7 瑞雷衰減通道模型(Rayleigh Fading Channel Model).............................................. 18
Chapter 3 功率分配演算法............................................................................................................... 19
3.1 系統通道模型................................................................................................................. 20
3.2 NOMA 下瑞雷通道的分析............................................................................................ 24
3.3 使用者分群及加強型功率分配方法.................................................................................... 26
3.3.1 使用者分群................................................................................................................. 26
3.3.2 加強型即時功率分配方法......................................................................................... 27
3.4 等化器.................................................................................................................................... 29
Chapter 4 模擬結果與討論............................................................................................................... 31
4.1 於傳統 NOMA 下之 SIC ...................................................................................................... 33
4.2 功率分配演算法於 NOMA................................................................................................... 37
4.2.1 Proposed NOMA 與 Conventional NOMA 之 sum-rate 比較 .................................... 37
4.2.2 分析 bit error rate....................................................................................................... 42
4.2.3 以使用者數分析 bit error rate................................................................................... 45
4.2.4 以 coherence time 分析 bit error rate......................................................................... 48
Chapter 5 結論................................................................................................................................... 53
參考文獻............................................................................................................................................... 54
參考文獻
[1] 3GPP, "Technical Specification Group Services and System Aspects; Release 15
Description; Summary of Rel-15 Work Item (Release 15),"
[2] C. Yan, A. Harada, A. Benjebbour, Y. Lan, A. Li, and H. Jiang, "Receiver design for
downlink non-orthogonal multiple access (NOMA)," in Proc. 2015 IEEE 81st Vehicular
Technology Conference (VTC Spring), (Glasgow, UK), pp. 1-6, May 2015.
[3] A. Mohan, Non-orthogonal multiple access. 2017.
[4] A. Benjebbour, A. Li, K. Saito, Y. Saito, Y. Kishiyama, and T. Nakamura, "NOMA: From
concept to standardization," in Proc. 2015 IEEE Conference on Standards for
Communications and Networking (CSCN), pp. 18-23, Oct. 2015.
[5] A. Benjebbour, A. Li, Y. Kishiyama, H. Jiang, and T. Nakamura, "System-level
performance of downlink NOMA combined with SU-MIMO for future LTE enhancements,"
in Proc. 2014 IEEE Globecom Workshops (GC Wkshps), (Austin, TX, USA), pp. 706-710,
Dec. 2014.
[6] S. Chinnadurai, P. Selvaprabhu, and M. H. Lee, "A novel joint user pairing and dynamic
power allocation scheme in MIMO-NOMA system," in Proc. 2017 International Conference
on Information and Communication Technology Convergence (ICTC), (Jeju, South Korea),
pp. 951-953, Oct. 2017.
[7] Z. Ding et al., "Application of non-orthogonal multiple access in LTE and 5G networks,"
IEEE Communications Magazine, vol. 55, pp. 185-191, Feb. 2017.
[8] A. Li, Y. Lan, X. Chen, and H. Jiang, "Non-orthogonal multiple access (NOMA) for
future downlink radio access of 5G," China Communications, vol. 12, pp. 28-37, Dec. 2015.
[9] Y. Saito, Y. Kishiyama, A. Benjebbour, T. Nakamura, A. Li, and K. Higuchi, "Nonorthogonal multiple access (NOMA) for cellular future radio access," in Proc. 2013 IEEE
77th Vehicular Technology Conference (VTC Spring), (Dresden, Germany), pp. 1-5, June
2013.
[10] R. Caglar Kizilirmak, "Non-orthogonal multiple access (NOMA) for 5G networks,"
2016.
[11] A. S. Marcano and H. L. Christiansen, "Impact of NOMA on network capacity
dimensioning for 5G HetNets," IEEE Access, vol. 6, pp. 13587-13603, Feb. 2018.
[12] X. Su, H. Yu, W. Kim, C. Choi, and D. Choi, "Interference cancellation for nonorthogonal multiple access used in future wireless mobile networks," EURASIP Journal on
Wireless Communications and Networking, vol. 2016, p. 231, Sept. 2016.
[13] M. R. Usman, A. Khan, M. A. Usman, and S. Y. Shin, "Joint non-orthogonal multiple
access (NOMA) & Walsh-Hadamard transform: Enhancing the receiver performance," China
Communications, vol. 15, pp. 160-177, Sept. 2018.
[14] T. Manglayev, R. C. Kizilirmak, and Y. H. Kho, "Optimum power allocation for nonorthogonal multiple access (NOMA)," in Proc. 2016 IEEE 10th International Conference on
Application of Information and Communication Technologies (AICT), (Baku, Azerbaijan), pp.
1-4, Oct. 2016.
[15] S. Haykin, Communication system 4th edition. Wiley India Pvt. Limited, 2006.
[16] Z. Xiao, L. Zhu, J. Choi, P. Xia, and X. Xia, "Joint power Allocation and beamforming
for non-orthogonal multiple access (NOMA) in 5G millimeter wave communications," IEEE
Transactions on Wireless Communications, vol. 17, pp. 2961-2974, May 2018.
[17] L. Zhu, J. Zhang, Z. Xiao, X. Cao, and D. O. Wu, "Optimal user pairing for downlink
non-orthogonal multiple access (NOMA)," IEEE Wireless Communications Letters, vol. 8,
pp. 328-331, April 2019.
[18] S. Liu, C. Zhang, and G. Lyu, "User selection and power schedule for downlink nonorthogonal multiple access (NOMA) system," in Proc. 2015 IEEE International Conference
on Communication Workshop (ICCW), (London, UK), pp. 2561-2565, June 2015.
[19] M. Patzold, U. Killat, F. Laue, and L. Yingchun, "On the statistical properties of
deterministic simulation models for mobile fading channels," IEEE Transactions on
Vehicular Technology, vol. 47, pp. 254-269, Feb 1998.
[20] Y. R. Zheng and X. Chengshan, "Improved models for the generation of multiple
uncorrelated Rayleigh fading waveforms," IEEE Communications Letters, vol. 6, pp. 256-
258, June 2002.
[21] W. C. Jakes, Microwave mobile communications. Wiley, 1974.
[22] A. Sorrentino, G. Ferrara, and M. Migliaccio, "On the coherence time control of a
continuous dode stirred reverberating chamber," IEEE Transactions on Antennas and
Propagation, vol. 57, pp. 3372-3374, Oct. 2009.
[23] T. S. Rappaport, Wireless Communications: Principles and Practice (2nd Edition).
Prentice Hall, 2002.
[24] (2019, 6/10). Coherence time (communications systems). Available:
https://en.wikipedia.org/wiki/Coherence_time_(communications_systems)
[25] Z. Q. Al-Abbasi and D. K. C. So, "User-pairing based non-orthogonal multiple access
(NOMA) system," in Proc. 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring),
(Nanjing, China), pp. 1-5, May 2016.
[26] N. Otao, Y. Kishiyama, and K. Higuchi, "Performance of non-orthogonal access with
SIC in cellular downlink using proportional fair-based resource allocation," in Proc. 2012
International Symposium on Wireless Communication Systems (ISWCS), (Paris, France), pp.
476-480, Aug. 2012.
[27] C. Y. Chi, C. C. Feng, and C. H. Chen, Blind Equalization and System Identification:
Batch Processing Algorithms, Performance and Applications. Springer, 2006.
[28] S. Haykin, Adaptive Filter Theory. Prentice Hall, 2002.
[29] M. M. El-Sayed, A. S. Ibrahim, and M. M. Khairy, "Power allocation strategies for nonorthogonal multiple access," in Proc. 2016 International Conference on Selected Topics in
Mobile & Wireless Networking (MoWNeT), (Cairo, Egypt), pp. 1-6, April 2016.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔