(3.238.96.184) 您好!臺灣時間:2021/05/18 16:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃柏翰
研究生(外文):Bo-Han HUANG
論文名稱:整合頻寬與運算資源分配之邊緣運算卸載決策演算法設計
論文名稱(外文):Design of Edge Computing Offload Decision Algorithm By Integrated Bandwidth and Computing Resource Allocation
指導教授:陳彥文陳彥文引用關係
指導教授(外文):Yen-Wen Chen
學位類別:碩士
校院名稱:國立中央大學
系所名稱:通訊工程學系
學門:工程學門
學類:電資工程學類
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:75
中文關鍵詞:行動/多接入邊緣運算卸載決策資源分配
外文關鍵詞:Mobile/Multi-access Edge ComputingTask Offloading DecisionResource Allocation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:34
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著各式各樣的物聯網服務崛起,現今採用集中式的傳統雲端運算已經不再能夠滿足各種需求,為了解決該問題,新型態的雲端運算架構-邊緣運算就被提出了,邊緣運算主要是將原先集中在骨幹網路雲端中心的運算伺服器改放置在邊緣網路,尤其是行動網路基地台中,利用運算伺服器靠近使用者的特點,來達成減少傳輸延遲的功效,也能讓骨幹網路的負載得以減輕。
邊緣運算伺服器與傳統雲端運算相比之下,邊緣運算伺服器運算能力並沒有這麼強大,再加上現今裝置有增無減的趨勢,期望邊緣運算系統能接受全部裝置的運算任務卸載要求(Offload Request)是不切實際的。然而其實許多裝置本身也擁有少部分的運算力,故邊緣運算系統是能夠適時地拒絕掉非必要的任務卸載要求,所以如何達成最高效的任務卸載決策與伺服器資源分配成為了在此領域中熱門研究的議題。
本論文提出Load-Adaptive Algorithm of Joint Resource Allocation(LAJRA)設計出自適應負載的方法,其在系統高負載時能將資源有效地保留給必要/危急的任務,而在低負載時又能接受非必要的任務卸載以減少資源的浪費,又因邊緣運算伺服器是架設在行動網路基地台中,故本方法特別整合上行頻寬與運算資源的分配期望相比其他方法能更符合實務面。
Along with the appearances of various IoT services, original centralized Cloud Computing hasn’t been able to satisfy every kinds of demands. For solving this problem, the new type of cloud computing structure -Edge Computing is presented. Its main concept is that setting up the computing server on edge network (especially base station) instead of centralized computing server in cloud center on backbone network, and utilizing the characteristic closing to UE to reduce the transmission delay and the load on backbone network.
Comparing with traditional cloud computing with edge computing, the computing capacity of edge computing server is not powerful enough. Moreover, the number of mobile devices keep increasing, expecting that the edge computing system can accepts all offload requests of computing tasks is unrealistic. In fact, many devices have own small computing capacity so the edge computing system should be able to reject the offload requests of non-essential tasks. As noted above, the way how to achieve most efficient task-offloading decision and resource allocation is a popular research topic in this field.
In this thesis, we propose Load-Adaptive Algorithm of Joint Resource Allocation(LAJRA) for adaptive load of edge computing system. The algorithm can reserve resources for the essential/critical tasks while the high system load, and it can also accept some offload requests of non-essential tasks for reducing the waste of resource while the low system load. Because the edge computing server is set up in base station, we integrate specially upload bandwidth and computing resource allocation in this algorithm to expect it will be more suitable in practice comparing with other methods.
摘要IV
ABSTRACTV
致謝VI
目錄VII
圖目錄IX
表目錄XII
1.第一章 緒論1
1.1 研究背景1
1.2 研究動機與目的1
1.3 章節概要2
2.第二章 相關研究背景3
2.1 LTE基本介紹3
2.1.1 LTE上下行速率計算5
2.2 雲端運算基本介紹8
2.2.1 雲端運算(Cloud Computing)10
2.2.2 行動邊緣運算(Mobile Edge Computing)12
2.2.3 霧運算(Fog Computing)14
2.3 相關文獻15
3.第三章 研究方法 17
3.1 系統架構17
3.2 系統流程19
3.2.1 系統參數19
3.2.2 UE端流程21
3.2.3 MEC端流程22
4.第四章 模擬結果與討論30
4.1 模擬環境30
4.2 模擬參數30
4.3 模擬結果比較31
4.3.1 不同Number of UE 之效能影響分析32
4.3.2 不同Delay Task Rate之效能影響分析39
4.3.3 不同NDT Allocation Interval 之效能影響分析46
4.3.4 不同NDT Lock Range之效能影響分析52
5.第五章 結論59
6.參考資料61
[1] [Online]. Available: https://note-on-clouds.blogspot.com/2017/12/lte-sc-fdma-vs-ofdma
-2.html. [Accessed 14 06 2020].
[2] S.L.LIN, Communication Components Magazine, no. 153, 2013/11.
[3] [Online]. Available: http://xdxdd.blogspot.com/2012/. [Accessed 14 06 2020].
[4] "LTE Modulation and Coding Scheme," [Online]. Available: http://anisimoff.org/eng/lte_
mcs.html. [Accessed 16 06 2020].
[5] "wiki," [Online]. Available: https://zh.wikipedia.org/wiki/%E9%9B%B2%E7%AB%AF%E9%81%8B%E7%AE%97. [Accessed 15 06 2020].
[6] C.H.WU, iThome, 21 06 2011. [Online]. Available: https://220.130.119.130/article/93007. [Accessed 14 06 2020].
[7] C.H.WU, iThome, 21 06 2011. [Online]. Available: https://www.ithome.com.tw/article/93
013. [Accessed 14 06 2020].
[8] 余至浩, "iThome," 08 06 2017. [Online]. Available: https://www.ithome.com.tw/news/114
625. [Accessed 15 06 2020].
[9] T. T. Vu, N. V. Huynh, D. T. Hoang, D. N. Nguyen and E. Dutkiewicz, "Offloading Energy Efficiency with Delay Constraint for Cooperative Mobile Edge Computing Networks," in
IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, United Arab Emirates, United Arab Emirates, 2018.
[10] Q. Liu, S. Huang, J. Opadere and T. Han, "An Edge Network Orchestrator for Mobile
Augmented Reality," in IEEE INFOCOM- IEEE Conference on Computer Communications, Honolulu, HI, USA, 2018.
[11] G. Hu, Y. Jia and Z. Chen, "Multi-User Computation Offloading with D2D for Mobile
Edge Computing," in IEEE Global Communications Conference (GLOBECOM), Abu
Dhabi, United Arab Emirates, United Arab Emirates, 2018.
[12] J. Li, H. Gao, T. Lv and Y. Lu, "Deep reinforcement learning based computation offloading
and resource allocation for MEC," in IEEE Wireless Communications and Networking
Conference (WCNC), Barcelona, Spain, 2018.
[13] Z. Liu , X. Wang, D. Wang, Y. Lan and J. Hou, "Mobility-aware Task Offloading and
Migration Schemes in SCNs with Mobile Edge Computing," in IEEE Wireless
Communications and Networking Conference (WCNC), Marrakesh, Morocco, Morocco,
2019.
[14] [Online]. Available: https://archive.eettaiwan.com/www.eettaiwan.com/ART_8800540396_622964_TA_
22f34eb5.HTM. [Accessed 14 06 2020].
電子全文 電子全文(網際網路公開日期:20220727)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文