(18.232.50.137) 您好!臺灣時間:2021/05/07 02:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:游竣崴
研究生(外文):Chun-Wei Yu
論文名稱:基於合作賽局理論的LED照明調控機制
論文名稱(外文):LED Dimming Control Mechanism Based on Cooperative Game Theory
指導教授:胡誌麟
指導教授(外文):Chih-Lin Hu
學位類別:碩士
校院名稱:國立中央大學
系所名稱:通訊工程學系
學門:工程學門
學類:電資工程學類
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:49
中文關鍵詞:物聯網LED調光智慧農場自動控制
外文關鍵詞:Internet of ThingsLED DimmingSmart FarmAutomatic Control
相關次數:
  • 被引用被引用:0
  • 點閱點閱:41
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  隨著科技發展伴隨用電量的增加,人們環保意識抬頭,近年來有越來越多關於能源分配的議題,政府也提出多項關於節約能源的計畫。有鑑於物聯網技術(Internet of Things)的快速發展,日常生活中的物品可以透過網路連線進行溝通,例如智慧農場、智慧家庭、智慧電錶,這些例子透過物聯網技術監測環境的變化,不僅達到節約能源的效果,也降低了人力與時間成本。在本碩士論文研究中,我們模擬智慧農場的能源管理情境,並結合賽局理論與物聯網技術,設計了一套能源分配調光系統。為了使調光系統更加準確並增加智慧農場節約能源的效率,此系統另外導入並整合低功耗通訊技術傳輸、合作賽局理論Shapley value、能源監控裝置等。
  在本論文的實驗中,首先我們在設備端透過多種物聯網感測器(如色彩感測器、電子計量器)感測環境濕度與光源的變化,再經由閘道器透過IBM的訊息佇列遙測傳輸(MQTT)將感測數據上傳至物聯網平台Node-RED,進行資料的建立與儲存並將數據視覺化,建立使用者介面存取所需的資訊並能讓使用者遠端操控進行控制與管理。我們也導入了賽局理論中的合作賽局模型Shapley value,透過資源分配的概念讓區域內的人工光源相互制衡,除了讓區域內的光源達到穩定輸出,也能偵測室內光與室外自然光,達到與太陽光互補的狀態,進而節省能源的消耗。我們可以設置環境所需要的光照區間,透過色彩感測器週期性的偵測環境光源,系統將自動判斷當下是否需要進行調光,再經由賽局理論模型,計算出各區域最適合的PWM調光值,達到調光的即時性、人工光源的穩定性以及能源消耗的最佳化三者之間的平衡。
  本論文基於物聯網技術的實驗設計,我們希望能讓管理者隨時隨地監控實驗環境,並讓系統即時偵測室內外部環境光源,同時達到給予植物所需光照及節約能源,實現最低成本能源消耗的理想。在未來的研究,我們期許能在智慧農場中,將本實驗結合能源管理系統(HEMS)實現在真實場域,同時給予植物與作物足夠光照並減少場域的照明設備功耗。
  With the development of science and technology and the increase in electricity consumption, people's awareness of environmental protection has risen. In recent years, there have been more and more issues about energy distribution, and the government has also put forward a number of energy conservation plans. In view of the rapid development of the Internet of Things technology, devices and objects in daily life can be communicated through Internet connections, such as smart farms, smart homes, and smart electricity meters. These examples use the Internet of Things technology to monitor changes in the environment. To achieve the effect of saving energy, it also reduces labor and time costs. In this thesis study, we simulate the energy management situation of the smart farm, and combine the game theory and the Internet of Things technology to design an energy distribution and dimming system. In order to make the dimming system more accurate and increase the energy saving efficiency of smart farms, this system additionally introduces and integrates low-power communication technology transmission, cooperative game theory Shapley value, energy monitoring devices, etc.
  In the experiment of this thesis study, first we use a variety of IoT sensors such as color sensors and electronic meters on the device side to sense changes in environmental humidity and light sources, and then pass information through the gateway using Message Queue Telemetry Transmission (MQTT) for uploading the sensed data to the Node-RED IoT platform. The IoT management server creates and stores the data and visualizes the data, creates the information needed for user interface access and allows users to remotely control and manage IoT devices and sensors. We also import the Shapley value of the cooperative game model in game theory, through the concept of resource allocation to allow the artificial light sources in the area to check and balance each other. In addition to allowing the light sources in the area to achieve a stable output, it can also detect indoor light and outdoor natural light. To achieve a state of complementarity with sunlight, thereby saving energy consumption. We can set the lighting interval required by the environment, and periodically detect the ambient light source through the color sensor. The system will automatically determine whether dimming is needed at the moment, and then use the theoretical model of the game to calculate the most suitable PWM adjustment for each area. The light value achieves a balance between the immediacy of dimming, the stability of artificial light sources and the optimization of energy consumption.
  This thesis study is based on the experimental design of the Internet of Things technology. We hope to allow managers to monitor the experimental environment anytime and anywhere, and allow the system to detect indoor and outdoor environmental light sources in real time, and at the same time achieve the required light for plants and save energy to achieve an ideal use case of the lowest energy consumption and cost. In future research, we hope to combine this experiment with an energy management system in a smart farm to implement it in a real field, while giving plants and crops enough light and reducing the power consumption of lighting equipment in the field.
1 簡介
1.1 前言. . . . . . . . . . . . 1
1.2 研究動機. . . . . . . . . . 3
2 背景與相關文獻探討
2.1 智慧農業. . . . . . . . . . 4
2.2 照明控制系統. . . . . . . . 6
2.3 賽局理論. . . . . . . . . . 7
2.4 系統平台與通訊協定. . . . . . 8
3 研究方法
3.1 問題描述與研究架構. . . . . . . . . 11
3.2 合作賽局模型Shapley Value. . . . . 13
3.3 基於Shapley Value 的調光演算法. . . 17
4 實作與結果分析
4.1 實驗環境. . . . . . . 19
4.2 實驗設計. . . . . . . 28
4.3 實驗方法. . . . . . . 29
4.4 實驗結果. . . . . . . 30
5 結論與未來展望. . . . . 37
參考文獻. . . . . . . . . 38
[1] J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, and W. Zhao, “A survey on internet of
things: Architecture, enabling technologies, security and privacy, and applications,”
in IEEE Internet of Things Journal, vol. 4, no. 5, Oct 2017, pp. 1125–1142.
[2] U. Hunkeler, H. L. Truong, and A. Stanford-Clark, “Mqtt-s —a publish/subscribe
protocol for wireless sensor networks,” in Proceedings of 2008 3rd International Conference
on Communication Systems Software and Middleware and Workshops (COMSWARE
’08), 2008, pp. 791–798.
[3] M. Blackstock and R. Lea, “Toward a distributed data flow platform for the
web of things (distributed node-red),” in Proceedings of the 5th International
Workshop on Web of Things, 2014, p. 34–39. [Online]. Available: https://doi.org/
10.1145/2684432.2684439
[4] S. Tenzin, S. Siyang, T. Pobkrut, and T. Kerdcharoen, “Low cost weather station
for climate-smart agriculture,” in Proceedings of 2017 9th International Conference
on Knowledge and Smart Technology (KST), 2017, pp. 172–177.
[5] T. Namgyel, C. Khunarak, S. Siyang, T. Pobkrut, J. Norbu, and T. Kerdcharoen,
“Effects of supplementary led light on the growth of lettuce in a smart hydroponic
system,” in Proceedings of 2018 10th International Conference on Knowledge and
Smart Technology (KST), 2018, pp. 216–220.
[6] J. Muangprathub, N. Boonnam, S. Kajornkasirat, N. Lekbangpong, A. Wanichsombat,
and P. Nillaor, “Iot and agriculture data analysis for smart farm,” Computers and Electronics in Agriculture, vol. 156, pp. 467 – 474, 2019. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0168169918308913
[7] Y. Mekonnen, L. Burton, A. Sarwat, and S. Bhansali, “Iot sensor network approach
for smart farming: An application in food, energy and water system,” in Proceedings
of 2018 IEEE Global Humanitarian Technology Conference (GHTC), 2018, pp. 1–5.
[8] O. Abrishambaf, P. Faria, and Z. Vale, “Energy resource scheduling in an agriculture
system using a decision tree approach,” in Proceedings of 2019 20th International
Conference on Intelligent System Application to Power Systems (ISAP), 2019, pp.
1–5.
[9] S. Gertphol, P. Chulaka, and T. Changmai, “Predictive models for lettuce quality
from internet of things-based hydroponic farm,” in Proceedings of 2018 22nd International
Computer Science and Engineering Conference (ICSEC), 2018, pp. 1–5.
[10] S. Hsia, S. Lai, and J. Ciou, “High-power led dimming driver with multi-level current
for smart street lighting system,” in Proceedings of 2013 22nd ITC Specialist Seminar
on Energy Efficient and Green Networking (SSEEGN), 2013, pp. 56–60.
[11] D. Rand, B. Lehman, and A. Shteynberg, “Issues, models and solutions for triac modulated
phase dimming of led lamps,” in Proceedings of 2007 IEEE Power Electronics
Specialists Conference, 2007, pp. 1398–1404.
[12] J. Jiang and M. Moallem, “Development of greenhouse led system with redlblue mixing
ratio and daylight control,” in Proceedings of 2018 IEEE Conference on Control
Technology and Applications (CCTA), 2018, pp. 1197–1202.
[13] H. Jung, J. Kim, B. Lee, and D. Yoo, “A new pwm dimmer using two active switches
for ac led lamp,” in Proceedings of The 2010 International Power Electronics Conference
- ECCE ASIA -, 2010, pp. 1547–1551.
[14] C. In, J. Kim, Y. Oh, and K. Cho, “Flicker characteristics of a multi-channel currentcontrolled
pwm dimming method of led lightings,” in Proceedings of 2019 IEEE 60th
International Scientific Conference on Power and Electrical Engineering of Riga
Technical University (RTUCON), 2019, pp. 1–7.
[15] R. B. Myerson, Game theory. Harvard university press, 2013.
[16] G. Chalkiadakis, E. Elkind, and M. Wooldridge, “Computational aspects of cooperative
game theory,” Synthesis Lectures on Artificial Intelligence and Machine Learning,
vol. 5, no. 6, pp. 1–168, 2011.
[17] K. Ritzberger et al., “Foundations of non-cooperative game theory,” OUP
Catalogue, 2002. [Online]. Available: https://ideas.repec.org/b/oxp/obooks/
9780199247868.html
[18] A. Khalid, N. Javaid, A. Mateen, M. H. Rahim, and M. Ilahi, “Smart homes coalition
based on game theory,” in Proceedings of 2018 IEEE 32nd International Conference
on Advanced Information Networking and Applications (AINA), 2018, pp. 846–849.
[19] A. E. Roth, The Shapley value: essays in honor of Lloyd S. Shapley. Cambridge
University Press, 1988.
[20] M. Lekić and G. Gardašević, “Iot sensor integration to node-red platform,” in Proceedings
of 2018 17th International Symposium INFOTEH-JAHORINA (INFOTEH),
2018, pp. 1–5.
[21] U. Hunkeler, H. L. Truong, and A. Stanford-Clark, “Mqtt-s —a publish/subscribe
protocol for wireless sensor networks,” in 2008 3rd International Conference on Communication
Systems Software and Middleware and Workshops (COMSWARE ’08),
2008, pp. 791–798.
[22] J. E. Luzuriaga, M. Perez, P. Boronat, J. C. Cano, C. Calafate, and P. Manzoni,
“A comparative evaluation of amqp and mqtt protocols over unstable and mobile
networks,” in Proceedings of 2015 12th Annual IEEE Consumer Communications
and Networking Conference (CCNC), 2015, pp. 931–936.
[23] S. Bandyopadhyay and A. Bhattacharyya, “Lightweight internet protocols for web
enablement of sensors using constrained gateway devices,” in Proceedings of 2013
International Conference on Computing, Networking and Communications (ICNC),
2013, pp. 334–340.
[24] N. Naik, “Choice of effective messaging protocols for iot systems: Mqtt, coap, amqp
and http,” in Proceedings of 2017 IEEE International Systems Engineering Symposium
(ISSE), 2017, pp. 1–7.
[25] I. Grigorik, “Making the web faster with http 2.0,” Commun. ACM, vol. 56, no. 12,
p. 42–49, Dec. 2013. [Online]. Available: https://doi.org/10.1145/2534706.2534721
電子全文 電子全文(網際網路公開日期:20220817)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔