(3.236.214.19) 您好!臺灣時間:2021/05/10 07:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:江承剛
研究生(外文):Chen-Kang Chiang,
論文名稱:蘭摩爾探針的電子溫度濃度估算法以解決表面汙染與微衛星面積比問題
論文名稱(外文):Estimate Correct Electron Temperature and Electron Density by Langmuir Probe Despite Probe Contamination And Small CubeSat To Probe Surface Area Ratio
指導教授:葉則亮
指導教授(外文):T. L. Yeh
學位類別:博士
校院名稱:國立中央大學
系所名稱:光機電工程研究所
學門:工程學門
學類:機械工程學類
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:51
中文關鍵詞:蘭摩爾探針面積比汙染層
外文關鍵詞:Langmuir probearea ratiocontaminated layer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:17
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文為搭載在立方衛星上的蘭摩爾探針( Langmuir probe, LP)設計一套演算法,以解決進行量測時應該克服的兩個對量測的重要干擾,以便準確計算探針周圍的電子溫度與電子濃度。一個問題是,當衛星表面積過小,量測時應保持不變的衛星機殼電位參考產生偏移; 另一個是覆蓋在探針與衛星表面的汙染層電容,會隨著量測的掃描電壓一起充放電。這兩個因素都會使量測到的I-V特性曲線產生扭曲,影響電子溫度與濃度的估算結果。為解決這些問題,先建立了一個蘭摩爾探針量測的等效電路模型,使用電路模擬軟體來重現過去文獻中提到的面積與汙染問題。 從而推導了探針德拜鞘(Debye Sheath, DS)電壓、機殼DS電壓、汙染層電壓與掃描電壓的關係式,並提出了一套演算法來估算在探針DS上的電壓做為量測數據的修正,以獲得更準確的探針I-V特性曲線,而得以計算出正確的電子溫度與電子濃度。最後使用美國的國防氣象衛星計劃 (Defense Meteorological Satellite Program, DMSP)中取得850km軌道中電離層的電子溫度(1000K~3500K)與電子濃度(103 ~ 106 cm-3)資料來驗證演算法的適用性。當衛星對探針的面積比為6倍以上且有高達100ms時間常數的汙染層時,演算法的修正可以將失真降至5%以下,並且可以將電子溫度濃度的採樣頻率提高至5Hz。
Probe contamination and limited CubeSat to probe surface area ratio were two factors seriously disturbing the I-V curve data measured by a DC Langmuir probe (LP) and, thus, the accuracy to calculate the electron temperature and electron density in the ionosphere. When the satellite surface area is too small that the electric potential of satellite body as the reference ground can be shifted during the voltage driven measurement distorting the results. Moreover, probe contamination forms a capacitive layer which gets charged and discharged together with the probe Debye Sheath (DS) under test distorting the measurements. To correct the distortions, an electric circuit model of the satellite Debye-Sheath (DS), the probe DS, contaminated layers, and the scan voltage source is constructed to simulate and describe their functional relationship during measurement and the causes of the distortions. An algorithm is developed to find the actual probe voltage from the scan voltage so that the correct I–V curve for the LPs can be obtained to estimate the electron temperature and density correctly surrounding a small satellite. Tuning and verifying the algorithm for real in orbit conditions, the ionosphere electron temperature <3500K and density <10^6 cm^3 observed by the Defense Meteorological Satellite Program (DMSP) in 850km orbit were distorted according to the circuit model and corrected by our algorithm. The circuit model simulates a probe on a CubeSat of area at least 6 times the probe with contamination time constant up to 10ms and the distorted data can be corrected to estimate electron temperature and density with less than 5% error.
一、 引介 1
1.1研究目的與動機 1
1.2文獻回顧 2
1.3研究構想 5
1.4貢獻及創見 6
二、 理論及技術背景 6
2.1電漿與德拜鞘 (Debye Sheath) 6
2.2蘭摩爾探針 (Langmuir probe) 7
2.3 電子溫度與電子濃度計算 10
三、 等效電路與模擬 11
3.1單德拜鞘等效電路模型 11
3.2雙德拜鞘等效電路模型 12
3.3探針與衛星表面的汙染 16
四、 演算法開發及驗證 18
4.1機殼德拜鞘補償演算法 18
4.2理想脈衝響應估算演算法 23
4.3汙染層殘壓估測演算法 27
4.4電子溫度、電子濃度疊代估算演算法 29
五、 結果與討論 36
參考文獻 38
[1] Aroh Barjatya. Langmuir probe measurements in the ionosphere. Utah State University Department: Electrical and Computer Engineering. 2007.
[2] Boggess R. L., Brace L. H., & Spencer N. W., “Langmuir probe measurements in the ionosphere”, Journal of Geophysical Research, 64(10), pp. 1627-1630, 1959. https://doi.org/10.1029/JZ064i010p01627
[3] Brace L. H., Theis R. F., & Dalgarno A., “The cylindrical electrostatic probes for Atmosphere Explorer -C, -D, and –E”, Radio Science, 8(4), pp. 341-348, 1973. https://doi.org/10.1029/RS008i004p00341
[4] Brace L. H., “Langmuir probe measurements in the ionosphere”, in Measurements Techniques in Space Plasmas: Particles, Geophys. Monogr. Ser , vol. 102, edited by R. F. Pfaff, J. E. Borovsky, and D. T. Young, pp. 23–36, AGU, Washington, D. C, 1998. https://doi.org/10.1029/GM102p0023
[5] Boyd, R. L. F., “Langmuir probes on spacecraft”, in Plasma Diagnostics, edited by W. Lochte-Holtgreven, p. 732, North-Holland, Amster- dam, 1968.
[6] Chen F. F., “Time-varying impedance of the sheath on a probe in an RF plasma”, Plasma Sources Sci. Technol. 15(4), p. 773, 2006. http://dx.doi.org/10.1088/0963-0252/15/4/022
[7] Chang F. Y., Liu J. Y., Chang L. C., Lin C. H., & Chen C. H., “Three-dimensional electron density along the WSA and MSNA latitudes probed by FORMOSAT-3/COSMIC”, Earth Planets and Space, 67, 2015. http://dx.doi.org/10.1186/s40623-015-0326-8
[8] Chen C. Y., Liu J. Y., Lee I. T., Rothkaehl H., Przepiorka D., Chang C., Matyjasiak B., Ryu K., & Oyama K. I., “The mid‐latitude trough and the plasmapause in the nighttime ionosphere simultaneously observed by DEMETER during 2006‐2009”, JGR Space Physics. 123(7), pp.5917-5932, 2018. https://doi.org/10.1029/2017JA024840
[9] Cussac T., Clair M. A., Ultré-Guerard P, Buisson F, Lassalle-Balier G, Ledu M, Elisabelar C, Passot X, & Rey N., “The DEMETER microsatellite and ground segment”, Planetary and Space Science, 54(5), pp.413-427, 2006. https://doi.org/10.1016/j.pss.2005.10.013
[10] Chiang C. K., Yeh T. L., Liu J. Y., Chao C. K., Loren C. Chang., Chen L. W., Chou C. J., Jiang S. B., “An algorithm for deriving the electron temperature and electron density probed by Langmuir probe onboard cube satellites”. Advances in Space Research, in this special issue, accepted, 2019.
[11] David S. Langmuir Probe Lab Report: Determination of Plasma Parameters of a Neon DC Plasma Using a Langmuir Probe. Department of Nuclear Engineering and Radiological Sciences, University of Wisconsin. 2007.
[12] Dote T. and Ichimiya T.,” Characteristics of resonance probes”, Journal of Applied Physics, 36. 1965. https://doi.org/10.1063/1.1714368
[13] Edward P. Szuszczewicz, “Area Influences and Floating Potentials in Langmuir Probe Measurements”, Journal of Applied Physics, 43, p.874. 1972. https://doi.org/10.1063/1.1661297
[14] Edward P. Szuszczewicz, & Julian C Holmes, “Surface contamination of active electrodes in plasmas: Distortion of conventional Langmuir probe measurements”, Journal of Physics D: Applied Physics, 46, p.5134. 1975. https://doi.org/10.1063/1.321572
[15] Heidt H., Puig-Sauri J., Moore A., Nakasuka S., and Twiggs R. J., 2000. “CubeSat: A new generation of Picosatellite for education and industry Low-Cost space experimentation,” In Proceedings of the Utah State University 14th Annual AIIA/USU Conference on Small Satellites, Logan City, Australia, pp. 113-116. SSC00-V-5.
[16] Hirt M., Steigies C. T., Piel A. “Plasma diagnostics with Langmuir probes in the equatorial ionosphere: II. Evaluation of DEOS flight F06”, Journal of Physics D: Applied Physics, 34, pp. 2650-2657, 2001. http://dx.doi.org/10.1088/0022-3727/34/17/312
[17] Ingram S. G., Annaratone B. M., & Ohuchi M., “Design and use of a gridded probe in a low‐pressure rf argon discharge”. Review of Scientific Instruments, 61(7), p.1883, 1990. https://doi.org/10.1063/1.1141113
[18] Jiang S. B., Yeh T. L., Yeh H. C., Liu J. Y., Hsu Y. H., & Liu L Y., “System Architecture of the BCU Payload on Tatiana-2”, Terrestrial Atmospheric and Oceanic Sciences. 23(2), pp. 193-208, 2012. 10.3319/TAO.2011.09.20.01(AA)
[19] Jiang S. B., Yeh T. L., Liu J. Y., Chao C. K., Loren C. Chang., Chen L. W., Chou C. J., Chiang C. K., “New Algorithms to estimate electron temperature and electron density with contaminated DC Langmuir probe onboard CubeSat”, Advances in Space Research, in this special issue, accepted, 2019.
[20] Johnson E. O., & Malter L., “A floating double probe method for measurements in Gas discharges”, Phys. Rev, 80, pp. 58-68, 1950. https://doi.org/10.1103/PhysRev.80.58
[21] Langmuir I., & Mott-Smith H., “Studies of electric discharges in gas at low pressures Part I-V”. General Electric Review. 27, pp. 449-455, 538-548, 616-623, 762-771, 810-820, 1924.
[22] Lebreton J. P., Stverak S., Travnicek P., Maksimovic M., Klinge D., Merikallio S., Lagoutte D., Poirier B., Blelly P. L., Kozacek Z., & Salaquarda M., “The ISL Langmuir probe experiment processing onboard DEMETER: Scientific objectives, description and first results”. Planetary and Space Science, 54(5), pp. 472-486, 2006. https://doi.org/10.1016/j.pss.2005.10.017
[23] Lin C. H., Liu C. H., Liu J. Y., Chen C. H., Burns A. G., & Wang W., “Midlatitude summer nighttime anomaly of the ionospheric electron density observed by FORMOSAT‐ 3/COSMIC”, Journal of Geophysical Research: Space Physics banner,115(A3), 2010. https://doi.org/10.1029/2009JA014084
[24] Lin Z. W., Chao C. K., Liu J. Y., Huang1 C. M., Chu Y. H., Su C. L., Mao Y. C., & Chang Y. S., “Advanced Ionospheric Probe scientific mission onboard FORMOSAT-5 satellite”. Terrestrial Atmospheric and Oceanic Sciences, 28, pp. 99-110, 2017. 10.3319/TAO.2016.09.14.01(EOF5)
[25] Liu J. Y., Chenc Y. I., Huang C. C., Parrot M., Shen X. H., Pulinets S. A., Yang Q. S., & Ho Y. Y., “A spatial analysis on seismo-ionospheric anomalies observed by DEMETER during the 2008 M8.0 Wenchuan earthquake”, Journal of Asian Earth Sciences, 114, pp. 414-419, 2015. https://doi.org/10.1016/j.jseaes.2015.06.012
[26] Merlino R. L., “Understanding Langmuir probe current-voltage characteristics”. Amer. J. Phys.75, (12), pp. 1078-1085, 2007. https://doi.org/10.1119/1.2772282
[27] Mott-Smith H. M., & Langmuir I., “The theory of collectors in gaseous discharges”, Phys. Rev., 28, pp. 727–763, 1926.
[28] Oyama, K. I., & C. Z. Cheng, Electron temperature probe, in An Introduction to Space Instrumentation, edited by K. Oyama and C. Z. Cheng, pp. 91–105, TERRAPUB, Tokyo, 2013, doi:10.5047/aisi.012.
[29] Oyama K. I., “A systematic investigation of several phenomena associated with contaminated Langmuir probes”, Planet. Space Sci. 24, pp. 183-190. 1976. https://doi.org/10.1016/0032-0633(76)90104-5
[30] Oyama, K. I. & Hirao, K., “Application of grass-sealed Langmuir probe to ionosphere study”, Rev. Sci. Instr., 47, pp. 101–107. 1976.
[31] Oyama K. I., Marinov P., Kutiev I., & Watanabed S., “Low latitude model of Te at 600 km based on Hinotori satellite data”. Advances in Space Research, 34(9), pp. 2004-2009, 2004. https://doi.org/10.1016/j.asr.2004.07.013
[32] Oyama K. I., Lee C. H., Fang H. K., & Cheng C. Z., “Means to remove electrode contamination effect of Langmuir probe measurement in space”, Review of Scientific Instruments. 83(5), 055113, 2012. http://dx.doi.org/10.1063/1.4722167
[33] Oyama, K.-I., Kakinami, Y., Liu, J.-Y., Kamogawa, M., & Kodama, T., “Reduction of electron temperature in low-latitude ionosphere at 600 km before and after large earthquakes”, Journal of Geophysical Research, 113, A11317, 2008. https://doi.org/10.1029/2008JA013367
[34] Oyama K. I., “DC Langmuir Probe for Measurement of Space Plasma”, Journal of Astronomy and Space Science, 32, pp. 167-180, 2015a. 10.5140/JASS.2015.32.3.167
[35] Oyama K. I., Hsu Y. W., Jiang G. S., Chen W. H., Cheng C. Z., Fang H. K., & Liu W. T., “Electron temperature and density probe for small aeronomy satellites”, Review of Scientific Instruments. 86(8), 084703, 2015b.
[36] Reifman A., & Dow W. G., “Dynamic probe measurements in the ionosphere”. Phys Rev, 76, pp. 987-988, 1949. https://doi.org/10.1103/PhysRev.76.987 .
[37] Rober L Merlino, “Understanding Langmuir probe current-volage characteristics”. American Jounal of Physics, 75, p. 1078, 2007. https://doi.org/10.1119/1.2772282
[38] Shimoyama, M., Oyama, K. I., Abe, T., & Yau, A. W., “Effect of finite electrode area ratio on high-frequency Langmuir probe measurements”, Journal of Physics D: Applied Physics. 45(7), 075205, 2012. http://dx.doi.org/10.1088/0022-3727/45/7/075205
[39] Spencer N. W., Brace L. H., Carignan G. R., Taeusch D. R., & Niemann H., “Electron and molecular nitrogen temperature and density in the thermosphere”. Journal of Geophysical Research, 70(11), pp. 2665-2698. 1965.
[40] Surya K. M., Sandip K. C., Dipak S., & Sujay P., “Topside ionospheric effects of the annular solar eclipse of 15th January 2010 as observed by DEMETER satellite”. Journal of Atmospheric and Solar-Terrestrial Physics, 159, pp. 1-6, 2017. https://doi.org/10.1016/j.jastp.2017.04.012
[41] Sturges D. J., “An evaluation of ionospheric probe performance – I. Evidence of contamination and clean-up of probe surfaces”, Planet. Space. Sci. 21(6), pp. 1029-1047, 1973. http://dx.doi.org/10.1016/0032-0633(73)90148-7
[42] Szuszczewicz E. P., & Holmes J. C., “Surface contamination of active electrodes in plasmas: Distortion of conventional Langmuir probe measurements”, J. Appl. Phys. 46, pp. 5134-5139, 1975. http://dx.doi.org/10.1063/1.321572
[43] Van Berkel, W. P. J., “Einflusz von änderungen des sondenzustandes auf sondencharakteristiken nach Langmuir”. Physica ,5(4), pp. 230-240, 1938. http://dx.doi.org/10.1016/S0031-8914(38)80080-X
[44] Wehner G., & Medicus G., “Reliability of probe measurements in hot cathode gas diodes”, J. Appl. Phys. 23, p1035-1046. 1952.http://dx.doi.org/10.1063/1.1702342
[45] Winkler C, Strele D, Tscholl S, Schrittwieser R, “On the contamination of Langmuir probe surfaces in a potassium plasma”, Plasma Physics and Controlled Fusion, 42, pp. 217-223, 2000. http://dx.doi.org/10.1088/0741-3335/42/2/311
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔