跳到主要內容

臺灣博碩士論文加值系統

(44.192.247.184) 您好!臺灣時間:2023/02/06 11:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳昱嵐
研究生(外文):Chen, Yu-Lan
論文名稱:乙烯醋酸乙烯酯共聚物二維局域共振型聲子晶體之聲波特性
論文名稱(外文):Acoustic wave in 2D locally resonant phononic crystal based on ethylene vinyl acetate
指導教授:蕭輔力
口試委員:蕭輔力吳憲昌黃家逸
口試日期:2020-07-28
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:光電科技研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:54
中文關鍵詞:局域共振型聲子晶體蘭姆波耳語迴廊模態
外文關鍵詞:
相關次數:
  • 被引用被引用:0
  • 點閱點閱:91
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文採用乙烯醋酸乙烯酯共聚物 (Ethylene Vinyl Acetate,簡稱為EVA) 作為聲子晶體的主體材料,首先分為兩種結構,在基體上挖空氣洞的孔洞型聲子晶體,以及將圓柱作為散射體的圓柱型聲子晶體,分別模擬比較兩者的頻帶結構圖,於後者可產生局域共振型的聲子能隙,逐漸改變圓柱型結構的幾何參數以及改為三角晶格、蜂巢晶格的排列方式,觀察聲子能隙之變化情形。接著將圓柱挖空成環柱型,在原能隙的頻段範圍中多出數條環型的模態,包含耳語迴廊模態以及環柱與底板耦合之模態,逐漸改變環柱結構之幾何參數了解對聲子能隙與耳語迴廊模態之影響。於環柱內填入環氧樹脂,使之成為半圓柱半環柱之結構,成功抑制環柱與底板耦合之模態,使能隙中只留下兩條耳語迴廊模態,藉著調變環氧樹脂填充高度,可預測能隙範圍及耳語迴廊模態之頻率,可以應用於減震抗噪、聲波控制、共振腔或高品質波導等領域。








關鍵字:局域共振型聲子晶體、蘭姆波、耳語迴廊模態
摘要 i
誌謝 ii
目錄 iii
圖目錄 v
表目錄 viii
第一章 緒論 1
第一節 聲子晶體簡介 1
第二節 蘭姆波簡介 6
第三節 研究動機 9
第四節 本文內容 10
第二章 數值分析 12
第一節 週期函數與倒晶格 12
第二節 週期排列 14
第三節 布洛赫定理與布里淵區 17
第四節 頻帶結構 19
第五節 有限元素分析法 20
第三章 分析EVA材料之聲子晶體 21
第一節 孔洞型與圓柱型聲子晶體之比較 21
第二節 與三角、蜂巢晶格之比較 27
第三節 環柱型聲子晶體結構 31
第四節 樣品製作與實驗量測 40
第五節 結論 47
第四章 結論與未來展望 50
參考文獻 51
[1] E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Physical review letters, vol. 58, no. 20, p. 2059, 1987.
[2] S. John, "Strong localization of photons in certain disordered dielectric superlattices," Physical review letters, vol. 58, no. 23, p. 2486, 1987.
[3] E. Yablonovitch, "Photonic crystals: semiconductors of light," Scientific American, vol. 285, no. 6, pp. 46-55, 2001.
[4] R. Meade, J. N. Winn, and J. Joannopoulos, "Photonic crystals: Molding the flow of light," ed: Princeton University Press Princeton, NJ, 1995.
[5] K. Sakoda, Optical properties of photonic crystals. Springer Science & Business Media, 2004.
[6] A. Yamilov, X. Wu, and H. Cao, "Photonic band structure of ZnO photonic crystal slab laser," Journal of applied physics, vol. 98, no. 10, p. 103102, 2005.
[7] R. Harbers et al., "Enhanced feedback in organic photonic-crystal lasers," Applied Physics Letters, vol. 87, no. 15, p. 151121, 2005.
[8] Y. Fink et al., "A dielectric omnidirectional reflector," Science, vol. 282, no. 5394, pp. 1679-1682, 1998.
[9] X. Dai, Y. Xiang, and S. Wen, "Broad omnidirectional reflector in the one-dimensional ternary photonic crystals containing superconductor," Progress In Electromagnetics Research, vol. 120, pp. 17-34, 2011.
[10] J. Knight, T. Birks, P. S. J. Russell, and D. Atkin, "All-silica single-mode optical fiber with photonic crystal cladding," Optics letters, vol. 21, no. 19, pp. 1547-1549, 1996.
[11] M. Roussey, M.-P. Bernal, N. Courjal, and F. I. Baida, "Experimental and theoretical characterization of a lithium niobate photonic crystal," Applied Physics Letters, vol. 87, no. 24, p. 241101, 2005.
[12] M. S. Kushwaha, P. Halevi, L. Dobrzynski, and B. Djafari-Rouhani, "Acoustic band structure of periodic elastic composites," Physical review letters, vol. 71, no. 13, p. 2022, 1993.
[13] M. M. Sigalas and E. N. Economou, "Elastic and acoustic wave band structure," Journal of sound and vibration, vol. 158, no. 2, pp. 377-382, 1992.
[14] M. Torres, F. M. De Espinosa, D. Garcia-Pablos, and N. Garcia, "Sonic band gaps in finite elastic media: surface states and localization phenomena in linear and point defects," Physical Review Letters, vol. 82, no. 15, p. 3054, 1999.
[15] M. Farooqui, T. Elnady, and W. Akl, "Validation of low frequency noise attenuation using locally resonant patches," The Journal of the Acoustical Society of America, vol. 139, no. 6, pp. 3267-3276, 2016.
[16] K. M. Ho, C. K. Cheng, Z. Yang, X. Zhang, and P. Sheng, "Broadband locally resonant sonic shields," Applied physics letters, vol. 83, no. 26, pp. 5566-5568, 2003.
[17] M. Hirsekorn, P. Delsanto, N. Batra, and P. Matic, "Modelling and simulation of acoustic wave propagation in locally resonant sonic materials," Ultrasonics, vol. 42, no. 1-9, pp. 231-235, 2004.
[18] C. J. Naify, J. S. Rogers, M. D. Guild, C. A. Rohde, and G. J. Orris, "Evaluation of the resolution of a metamaterial acoustic leaky wave antenna," The Journal of the Acoustical Society of America, vol. 139, no. 6, pp. 3251-3258, 2016.
[19] L. Wang, J. L. Gómez-Tornero, E. Rajo-Iglesias, and O. Quevedo-Teruel, "Low-dispersive leaky-wave antenna integrated in groove gap waveguide technology," IEEE Transactions on Antennas and Propagation, vol. 66, no. 11, pp. 5727-5736, 2018.
[20] F. Cervera et al., "Refractive acoustic devices for airborne sound," Physical review letters, vol. 88, no. 2, p. 023902, 2001.
[21] S. Tol, F. L. Degertekin, and A. Erturk, "Gradient-index phononic crystal lens-based enhancement of elastic wave energy harvesting," Applied Physics Letters, vol. 109, no. 6, p. 063902, 2016.
[22] M. Molerón, M. Serra-Garcia, and C. Daraio, "Acoustic Fresnel lenses with extraordinary transmission," Applied Physics Letters, vol. 105, no. 11, p. 114109, 2014.
[23] H. Li et al., "Acoustic manipulating of capsule-shaped particle assisted by phononic crystal plate," Applied Physics Letters, vol. 112, no. 22, p. 223501, 2018.
[24] S. Cho, W. Yang, S. Lee, and J. Park, "Flexural wave cloaking via embedded cylinders with systematically varying thicknesses," The Journal of the Acoustical Society of America, vol. 139, no. 6, pp. 3320-3324, 2016.
[25] Y. Pennec, B. Djafari-Rouhani, J. Vasseur, A. Khelif, and P. A. Deymier, "Tunable filtering and demultiplexing in phononic crystals with hollow cylinders," Physical Review E, vol. 69, no. 4, p. 046608, 2004.
[26] O. R. Bilal and M. I. Hussein, "Trampoline metamaterial: Local resonance enhancement by springboards," Applied Physics Letters, vol. 103, no. 11, p. 111901, 2013.
[27] S. Benchabane, A. Khelif, J.-Y. Rauch, L. Robert, and V. Laude, "Evidence for complete surface wave band gap in a piezoelectric phononic crystal," Physical Review E, vol. 73, no. 6, p. 065601, 2006.
[28] B. A. Auld, Acoustic fields and waves in solids. Рипол Классик, 1973.
[29] P. J. Martin, B. G. Oldaker, A. H. Miklich, and D. E. Pritchard, "Bragg scattering of atoms from a standing light wave," Physical review letters, vol. 60, no. 6, p. 515, 1988.
[30] G. Birkl, M. Gatzke, I. Deutsch, S. Rolston, and W. D. Phillips, "Bragg scattering from atoms in optical lattices," Physical review letters, vol. 75, no. 15, p. 2823, 1995.
[31] Z. Liu et al., "Locally resonant sonic materials," science, vol. 289, no. 5485, pp. 1734-1736, 2000.
[32] L. Rayleigh, "CXII. The problem of the whispering gallery," The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 20, no. 120, pp. 1001-1004, 1910.
[33] Y. Jin, Y. Pennec, Y. Pan, and B. Djafari-Rouhani, "Phononic crystal plate with hollow pillars connected by thin bars," Journal of Physics D: Applied Physics, vol. 50, no. 3, p. 035301, 2016.
[34] Y. Jin et al., "Tunable waveguide and cavity in a phononic crystal plate by controlling whispering-gallery modes in hollow pillars," Physical Review B, vol. 93, no. 5, p. 054109, 2016.
[35] R. Weis and T. Gaylord, "Lithium niobate: summary of physical properties and crystal structure," Applied Physics A, vol. 37, no. 4, pp. 191-203, 1985.
[36] C. Kittel and P. McEuen, Introduction to solid state physics. Wiley New York, 1976.
[37] Z. Wang, S.-Y. Yu, F.-K. Liu, H. Zhang, M.-H. Lu, and Y.-F. Chen, "Imaging localized phononic cavity modes with laser interferometer," Journal of Physics D: Applied Physics, vol. 51, no. 25, p. 255104, 2018.
[38] N. Kaina, F. Lemoult, M. Fink, and G. Lerosey, "Multiple scattering enables negative index in single negative metamaterials: proof with an acoustic superlens."
[39] N. Sui, X. Yan, T.-Y. Huang, J. Xu, F.-G. Yuan, and Y. Jing, "A lightweight yet sound-proof honeycomb acoustic metamaterial," Applied Physics Letters, vol. 106, no. 17, p. 171905, 2015.
[40] L. Brillouin, "Wave propagation in periodic structures: electric filters and crystal lattices," 1953.
[41] A. Nougaoui and B. D. Rouhani, "Complex band structure of acoustic waves in superlattices," Surface science, vol. 199, no. 3, pp. 623-637, 1988.
[42] A. Hrennikoff, "Solution of problems of elasticity by the framework method," J. appl. Mech., 1941.
[43] R. Courant, "Variational methods for the solution of problems of equilibrium and vibrations. B Am Math Soc 49: 1–23. doi: 10.1090," S0002-9904-1943-07818-4, 1943.
[44] R. Dias, N. Coto, G. Batalha, and L. Driemeier, "Systematic study of ethylene-vinyl acetate (EVA) in the manufacturing of protector devices for the orofacial system," Archives of Materials Science and Engineering, vol. 86, no. 1, 2017.
[45] M. Badreddine Assouar and M. Oudich, "Enlargement of a locally resonant sonic band gap by using double-sides stubbed phononic plates," Applied Physics Letters, vol. 100, no. 12, p. 123506, 2012.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top