(3.238.186.43) 您好!臺灣時間:2021/03/01 15:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蔡淳宜
研究生(外文):TSAI, CHUN-YI
論文名稱:茶黃素-3,3\'-雙沒食子酸酯捕捉甲基乙二醛的能力以及對進階糖化終產物誘導狗腎臟遠端小管表皮細胞抗糖化之影響
論文名稱(外文):Effects of theaflavin-3,3\'-digallate on trapping of methylglyoxal and antiglycative activities in MDCK epithelial cells induced by advanced glycation end products
指導教授:羅至佑
指導教授(外文):Lo, Chih-Yu
學位類別:碩士
校院名稱:國立嘉義大學
系所名稱:食品科學系研究所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2019
畢業學年度:108
語文別:中文
論文頁數:60
中文關鍵詞:紅茶抗糖化茶黃素-33'-雙沒食子酸酯進階糖化終產物狗腎臟遠端小管表皮細胞
外文關鍵詞:black teaantiglycationtheaflavin-33'-digallateadvanced glycation end productsMadin-Darby canine kidney epithelial cells
相關次數:
  • 被引用被引用:0
  • 點閱點閱:32
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要 I
Abstract III
謝誌 V
目錄 VI
圖次 IX
表次 X
壹、前言 1
貳、文獻回顧 2
一、 糖化反應 2
1. 反應途徑 2
2. 進階糖化終產物的形成與來源 4
3. 進階糖化終產物的代謝與疾病 6
4. 抗糖化作用 8
二、 糖尿病 10
1. 糖尿病分類 10
2. 相關症狀 12
三、 茶 14
1. 茶葉製程 14
2. 茶種類 14
3. 主要成分 16
4. 生物活性 18
參、實驗目的 19
肆、實驗架構 20
伍、材料與方法 21
一、 材料 21
1. 樣品來源 21
2. 細胞株來源 21
3. 化學藥品、溶劑 21
三、 實驗方法 25
1. MGO 清除能力測定 25
2. AGEs 的製備 27
3. 螢光 AGEs 的測定 27
4. 細胞培養 27
5. AGEs、TF3 及 AG 樣品配製 28
6. MDCK 細胞株細胞存活率測定(MTT assay) 28
7. MDCK 細胞株活性氧分子含量測定 29
8. 西方墨點法(Western blot) 31
9. 統計分析 36
陸、結果與討論 37
一、 MGO 清除能力測定 37
二、 螢光 AGEs 的測定 40
三、 MDCK 細胞株細胞存活率測定(MTT assay) 42
四、 MDCK 細胞株活性氧分子含量測定(ROS) 44
五、 MDCK 細胞對糖化相關蛋白質表現量之影響 46
六、 MDCK 細胞對抗氧化相關蛋白質表現量之影響 49
七、 MDCK 細胞對發炎相關蛋白質表現量之影響 52
柒、結論 54
捌、參考文獻 55
1. Maillard, L., Formation of humus and combustible minerals without the influence of atmospheric oxygen, microorganisms, high temperatures or high pressure. Comptes Rendus de l'Académie des Sciences 1912, 154, 66.
2. Ames, J. M., Applications of the Maillard reaction in the food industry. Food Chemistry 1998, 62 (4), 431-439.
3. Ulrich, P.; Cerami, A., Protein glycation, diabetes, and aging. Recent Progress in Hormone Research 2001, 56 (1), 1-22.
4. Peyroux, J.; Sternberg, M., Advanced glycation endproducts (AGEs): pharmacological inhibition in diabetes. Pathologie Biologie 2006, 54 (7), 405-419.
5. Ahmed, N., Advanced glycation endproducts—role in pathology of diabetic complications. Diabetes Research and Clinical Practice 2005, 67 (1), 3-21.
6. Luevano-Contreras, C.; Chapman-Novakofski, K., Dietary advanced glycation end products and aging. Nutrients 2010, 2 (12), 1247-1265.
7. Busch, M.; Franke, S.; Rüster, C.; Wolf, G., Advanced glycation end‐products and the kidney. European Journal of Clinical Investigation 2010, 40 (8), 742-755.
8. Yamagishi, S. I., Diabetes and advanced glycation end products. In Diabetes and Aging-related Complications, Springer: 2018; 201-212.
9. Vlassara, H.; Palace, M., Diabetes and advanced glycation endproducts. Journal of Internal Medicine 2002, 251 (2), 87-101.
10. Vlassara, H., Pathogenic effects of advanced glycosylation: biochemical, biologic, and clinical implications for diabetes and aging. Laboratory Investigation 1994, 70, 138-151.
11. Lander, H. M.; Tauras, J. M.; Ogiste, J. S.; Hori, O.; Moss, R. A.; Schmidt, A. M., Activation of the receptor for advanced glycation end products triggers a p21 ras-dependent mitogen-activated protein kinase pathway regulated by oxidant stress. Journal of Biological Chemistry 1997, 272 (28), 17810-17814.
12. Bierhaus, A.; Ziegler, R.; Nawroth, P. P., Molecular mechanisms of diabetic angiopathy–clues for innovative therapeutic interventions. Hormone Research in Paediatrics 1998, 50 (Suppl. 1), 1-5.
13. Singh, R.; Barden, A.; Mori, T.; Beilin, L., Advanced glycation end-products: a review. Diabetologia 2001, 44 (2), 129-146.
14. Maessen, D. E.; Stehouwer, C. D.; Schalkwijk, C. G., The role of methylglyoxal and the glyoxalase system in diabetes and other age-related diseases. Clinical Science 2015, 128 (12), 839-861.
15. American Diabetes Association, Diagnosis and classification of diabetes mellitus. Diabetes Care 2010, 33 (Supplement 1), S62-S69.
16. Meetoo, D., Diabetes: complications and the economic burden. British Journal of Healthcare Management 2014, 20 (2), 60-67.
17. Fong, D. S.; Aiello, L.; Gardner, T. W.; King, G. L.; Blankenship, G.; Cavallerano, J. D.; Ferris, F. L.; Klein, R., Retinopathy in diabetes. Diabetes Care 2004, 27 (suppl 1), s84-s87.
18. Molitch, M. E.; DeFronzo, R. A.; Franz, M. J.; Keane, W. F., Nephropathy in diabetes. Diabetes Care 2004, 27, S79-S83.
19. Petrovic, M.; Maganaris, C. N.; Deschamps, K.; Verschueren, S. M.; Bowling, F. L.; Boulton, A. J.; Reeves, N. D., Altered Achilles tendon function during walking in people with diabetic neuropathy: implications for metabolic energy saving. Journal of Applied Physiology 2018, 124 (5), 1333-1340.
20. Feldman, E. L.; Callaghan, B. C.; Pop-Busui, R.; Zochodne, D. W.; Wright, D. E.; Bennett, D. L.; Bril, V.; Russell, J. W.; Viswanathan, V., Diabetic neuropathy. Nature Reviews Disease Primers 2019, 5 (1), 41.
21. Xu, J.; Wang, M.; Zhao, J.; Wang, Y. H.; Tang, Q.; Khan, I. A., Yellow tea (Camellia sinensis L.), a promising Chinese tea: Processing, chemical constituents and health benefits. Food Research International 2018, 107, 567-577.
22. Lin, Y. L.; Juan, I. M.; Chen, Y. L.; Liang, Y. C.; Lin, J. K., Composition of polyphenols in fresh tea leaves and associations of their oxygen-radical-absorbing capacity with antiproliferative actions in fibroblast cells. Journal of Agricultural and Food Chemistry 1996, 44 (6), 1387-1394.
23. Senanayake, S. N., Green tea extract: Chemistry, antioxidant properties and food applications–A review. Journal of Functional foods 2013, 5 (4), 1529-1541.
24. Li, S.; Lo, C. Y.; Pan, M. H.; Lai, C. S.; Ho, C. T., Black tea: chemical analysis and stability. Food & Function 2013, 4 (1), 10-18.
25. Su, Y. L.; Leung, L. K.; Huang, Y.; Chen, Z. Y., Stability of tea theaflavins and catechins. Food Chemistry 2003, 83 (2), 189-195.
26. Higdon, J. V.; Frei, B., Tea catechins and polyphenols: health effects, metabolism, and antioxidant functions. Critical Reviews in Food Science and Nutrition 2003, 43 (1), 89-143.
27. Saeed, M.; Naveed, M.; Arif, M.; Kakar, M. U.; Manzoor, R.; El-Hack, M. E. A.; Alagawany, M.; Tiwari, R.; Khandia, R.; Munjal, A., Green tea (Camellia sinensis) and L-theanine: Medicinal values and beneficial applications in humans—A comprehensive review. Biomedicine & Pharmacotherapy 2017, 95, 1260-1275.
28. Hara‐Kudo, Y.; Yamasaki, A.; Sasaki, M.; Okubo, T.; Minai, Y., Haga, M., Kondo, K.; Sugita‐Konishi, Y., Antibacterial action on pathogenic bacterial spore by green tea catechins. Journal of the Science of Food and Agriculture 2005, 85 (14), 2354-2361.
29. Kavanagh, K. T.; Hafer, L. J.; Kim, D. W.; Mann, K. K.; Sherr, D. H., Rogers, A. E.; Sonenshein, G. E., Green tea extracts decrease carcinogen‐induced mammary tumor burden in rats and rate of breast cancer cell proliferation in culture. Journal of Cellular Biochemistry 2001, 82 (3), 387-398.
30. Leung, L. K.; Su, Y.; Chen, R.; Zhang, Z.; Huang, Y.; Chen, Z. Y., Theaflavins in black tea and catechins in green tea are equally effective antioxidants. The Journal of Nutrition 2001, 131 (9), 2248-2251.
31. Lagha, A. B.; Grenier, D., Tea polyphenols inhibit the activation of NF-κB and the secretion of cytokines and matrix metalloproteinases by macrophages stimulated with Fusobacterium nucleatum. Scientific Reports 2016, 6, 1-11.
32. Vermeer, M. A.; Mulder, T. P.; Molhuizen, H. O., Theaflavins from black tea, especially theaflavin-3-gallate, reduce the incorporation of cholesterol into mixed micelles. Journal of Agricultural and Food Chemistry 2008, 56 (24), 12031-12036.
33. Tang, W.; Li, S.; Liu, Y.; Huang, M. T.; Ho, C. T., Anti-diabetic activity of chemically profiled green tea and black tea extracts in a type 2 diabetes mice model via different mechanisms. Journal of Functional Foods 2013, 5 (4), 1784-1793.
34. Chen, X. Y.; Huang, I. M.; Hwang, L. S.; Ho, C. T.; Li, S.; Lo, C. Y., Anthocyanins in blackcurrant effectively prevent the formation of advanced glycation end products by trapping methylglyoxal. Journal of Functional Foods 2014, 8, 259-268.
35. Weigel, K. U.; Opitz, T.; Henle, T., Studies on the occurrence and formation of 1,2-dicarbonyls in honey. European Food Research and Technology 2004, 218 (2), 147-151.
36. Chen, L.; Luan, J.; Fei, X.; Wu, B.; Shen, C.; Zhang, R., Determination of methylglyoxal in Manuka honey of New Zealand by high performance liquid chromatography. Chinese Journal of Chromatography 2014, 32 (2), 189-193.
37. Chu, C.; Lu, F.; Yeh, R.; Li, Z.; Chen, C., Synergistic antioxidant activity of resveratrol with genistein in high-glucose treated Madin-Darby canine kidney epithelial cells. Biomedical Reports 2016, 4 (3), 349-354.
38. Kanlaya, R.; Khamchun, S.; Kapincharanon, C.; Thongboonkerd, V., Protective effect of epigallocatechin-3-gallate (EGCG) via Nrf2 pathway against oxalate-induced epithelial mesenchymal transition (EMT) of renal tubular cells. Scientific Reports 2016, 6, 1-13.
39. Twentyman, P. R.; Luscombe, M., A study of some variables in a tetrazolium dye (MTT) based assay for cell growth and chemosensitivity. British Journal of Cancer 1987, 56 (3), 279-285.
40. Dikalov, S.; Griendling, K. K.; Harrison, D. G., Measurement of reactive oxygen species in cardiovascular studies. Hypertension 2007, 49 (4), 717-727.
41. Lo, C. Y.; Li, S.; Tan, D.; Pan, M. H.; Sang, S.; Ho, C. T., Trapping reactions of reactive carbonyl species with tea polyphenols in simulated physiological conditions. Molecular Nutrition & Food Research 2006, 50 (12), 1118-1128.
42. Sang, S.; Shao, X.; Bai, N.; Lo, C. Y.; Yang, C. S.; Ho, C. T., Tea polyphenol (−)-epigallocatechin-3-gallate: a new trapping agent of reactive dicarbonyl species. Chemical Research in Toxicology 2007, 20 (12), 1862-1870.
43. Schmitt, A.; Schmitt, J.; Münch, G.; Gasic-Milencovic, J., Characterization of advanced glycation end products for biochemical studies: side chain modifications and fluorescence characteristics. Analytical Biochemistry 2005, 338 (2), 201-215.
44. Wang, S. H.; Chang, J. C.; Pokkaew, R.; Lee, J. F.; Chiou, R. Y. Y., Modified fast procedure for the detection and screening of antiglycative phytochemicals. Journal of Agricultural and Food Chemistry 2011, 59 (13), 6906-6912.
45. 羅雁霖,表沒食子兒茶素沒食子酸酯捕捉甲基乙二醛的能力以及對進階糖化終產物誘導狗腎臟遠端小管表皮細胞抗糖化之影響。國立嘉義大學食品科學系研究所碩士論文 2019。
46. 王延融,紅茶中茶黃素抗糖化效果。國立嘉義大學食品科學系研究所碩士論文 2018。
47. Yan, H. D.; LI, X. Z.; Xie, J. M.; Man, L., Effects of advanced glycation end products on renal fibrosis and oxidative stress in cultured NRK-49F cells. Chinese Medical Journal 2007, 120 (9), 787-793.
48. Ramlagan, P.; Rondeau, P.; Planesse, C.; Neergheen-Bhujun, V.; Bourdon, E.; Bahorun, T., Comparative suppressing effects of black and green teas on the formation of advanced glycation end products (AGEs) and AGE-induced oxidative stress. Food & Function 2017, 8 (11), 4194-4209.
49. Tanji, N.; Markowitz, G. S.; Fu, C.; Kislinger, T.; Taguchi, A.; Pischetsrieder, M.; Stern, D.; Schmidt, A. M.; D'Agati, V. D., Expression of advanced glycation end products and their cellular receptor RAGE in diabetic nephropathy and nondiabetic renal disease. Journal of the American Society of Nephrology 2000, 11 (9), 1656-1666.
50. Thornalley, P., Glyoxalase I–structure, function and a critical role in the enzymatic defence against glycation. Biochemical Society Transactions 2003, 31 (6), 1343-1348.
51. Ma, Q., Role of nrf2 in oxidative stress and toxicity. Annual Review of Pharmacology and Toxicology 2013, 53, 401-426.
52. Wu, Y.; Jin, F.; Wang, Y.; Li, F.; Wang, L., Wang, Q., Ren, Z.; Wang, Y., In vitro and in vivo anti-inflammatory effects of theaflavin-3,3′-digallate on lipopolysaccharide-induced inflammation. European Journal of Pharmacology 2017, 794, 52-60.
電子全文 電子全文(網際網路公開日期:20240902)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔