跳到主要內容

臺灣博碩士論文加值系統

(44.201.92.114) 您好!臺灣時間:2023/03/31 11:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張馨尹
研究生(外文):Chang Shin Yin
論文名稱:比較不同熱處理方法對葡萄柚中呋喃香豆素之影響並探討果汁的抗糖化及抗氧化特性
論文名稱(外文):Comparing the effects of different heat treatments on furanocoumarin contained in grapefruit and the anti-glycation antioxidant properties of the fruits juice
指導教授:楊懷文楊懷文引用關係
指導教授(外文):Yang, Huai-Wen
學位類別:碩士
校院名稱:國立嘉義大學
系所名稱:食品科學系研究所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:102
中文關鍵詞:葡萄柚汁呋喃香豆素抗氧化抗糖化熱加工
外文關鍵詞:grapefruit juicefuranocoumarinantioxidantanti-glycationthermal processing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:383
  • 評分評分:
  • 下載下載:57
  • 收藏至我的研究室書目清單書目收藏:0
近年來消費者大多以果汁取代直接食用新鮮水果,但由於葡萄柚汁中的呋喃香豆素會與藥物產生交互作用,因此使消費者存在擔憂。本研究主要探討熱處理 (微波及水浴) 後葡萄柚汁 (grapefruit juice, GJ) 的物理性質、呋喃香豆素含量及抗糖化與抗氧化特性。呋喃香豆素含量經由熱處理後,6′,7′-dihydroxybergamottin (DHB)、Bergamottin (BG) 含量顯著降低,微波組的DHB 與 BG 含量分別降低 82.78% 和 58.49%,水浴組則分別下降 86.89% 和 77.36%。於抗糖化特性結果顯示對於梅納反應之抑制作用,葡萄柚汁經微波加熱 1 分鐘及水浴加熱 10 分鐘後具有最高的梅納反應抑制率,分別為 81.30 ± 0.96% 及 86.46 ± 1.06%。對 BSA-Fru 糖化模型之 AGEs 抑制作用中,葡萄柚汁微波 3 分鐘 (95.54 ± 0.45%) 及水浴加熱 10 分鐘 (95.49 ± 0.13%) 時,其抑制率最高。而糖化反應初期產物果糖胺之抑制效果則在微波處理 3 分鐘 (11.50 ± 0.28%) 及水浴處理 10 分鐘 (9.66 ± 0.21%) 時具有最高的果糖胺抑制率。熱處理同時有助於抗氧化能力,在微波 1 分鐘 (88.04%) 及水浴 10 分鐘 (84.93%) 之葡萄柚汁其 DPPH 自由基清除能力最佳。而ABTS•+ 自由基清除能力以微波 1 分鐘 (33.01%) 清除能力效果最佳,水浴處理組則是隨著加熱時間的上升清除能力反而降低,從 31.87% 降低至 21.16%。總酚含量之結果以微波處理 1 分鐘 (3.37 ± 0.02 mg GAE/mL GJ),水浴 10 分鐘 (2.84 ± 0.01 mg GAE/mL GJ),其總酚含量最高。類黃酮之含量以微波加熱 4 分鐘 (0.27 ± 0.00 mg QE/mL GJ) 及水浴 20 分鐘 (0.24 ± 0.00 mg QE/mL GJ) 可保留最多類黃酮。綜合上述,利用熱處理之方式不僅可以降低呋喃香豆素之含量,並且使抗氧化能力增加,在適度的加熱時間下,同時還可以抑制糖化反應的產生,成為天然來源的糖化抑制劑,因此葡萄柚可在未來對於抗糖化及抗氧化上具有更大的應用性。
In recent years, individuals have mostly consumed fruit juices rather than fresh fruits, but safety concerns are raised because the contained furanocoumarin in grapefruit juice would interact with certain drugs. This study mainly explored the physical properties of grapefruit juice after thermal treatments (microwave and water bath) including furanocoumarin content of the juice, and also the anti-glycation and antioxidant properties of the treated juice. After the furanocoumarin content was thermally treated, the DHB (6′,7′-dihydroxybergamottin) and BG (Bergamottin) contents were significantly reduced. The DHB and BG contents of the microwaved juice were reduced by 82.78% and 58.49%, respectively. The water bath declined the corresponding contents by 86.89% and 77.36%, respectively. The inhibitions (%) of Maillard reaction in grapefruit juice are the greatest as 680 W microwave energy being employed for 1 minute or water bath employed for 10 minutes with the corresponding rates of 81.30 ± 0.96% and 86.46 ± 1.06%, respectively. In the inhibition (%) of AGEs based on the BSA-Fru saccharification model, the grapefruit juice subjected to a 3-min microwave heating resulted in the highest inhibition rate (95.54 ± 0.45%) within the group, and to a 10-min water bath, the highest (95.49 ± 0.13%) within the group. The inhibitory effect of fructosamine at the initial stage of the saccharification reaction has the highest inhibitory rate of fructosamine under the 3-min microwave treatment (11.50 ± 0.28%) and the 10-min water bath (9.66 ± 0.21%). Thermal treatments are also related to the antioxidant capacity. The grapefruit juice treated by microwave for 1 minute (88.04%) and the water bath for 10 minutes (84.93%) present the best DPPH free radical scavenging ability within the same treated group for different heating durations. The best ABTS • + radical scavenging ability retention was observed as the 1-min microwave energy was applied (33.01%). In the water bath treated group, the ABTS • + scavenging ability decreased as a function of the heating time, declining from 31.87% to 21.16%. The resulted total phenol content peaking highest for a 1-min microwave heating was (3.37 ± 0.02 mg GAE / mL GJ) and that for a 10-min water bath was (2.84 ± 0.01 mg GAE / mL GJ). The content of flavonoids can be retained by microwave heating while a 4-min duration was applied (0.27 ± 0.00 mg QE / mL GJ) or water bath for 20 minutes employed (0.24 ± 0.00 mg QE / mL GJ). Summarily, the designated heat treatments can not only reduce the content of furanocoumarin, but also promote the antioxidant capacity. With moderate heating times, considerable inhibition of saccharification reaction would be facilitated and become a good candidate of a saccharification inhibitor of natural origin. Therefore, grapefruit juice may potentially possess a greater applicability towards anti-glycation and antioxidant in the future.
中文摘要 I
英文摘要 III
目錄 VI
表目錄 X
圖目錄 XI
附表目錄 XII
附圖目錄 XIII
壹、前言 1
貳、文獻回顧 3
2.1葡萄柚 3
2.1.1葡萄柚簡介 3
2.1.2葡萄柚之營養成分 8
2.1.3葡萄柚對健康之影響 10
2.2葡萄柚汁之藥物交互作用 11
2.2.1葡萄柚汁之生理作用 11
2.2.2葡萄柚汁影響藥物之活性成分 15
2.3糖尿病 19
2.3.1糖化反應 20
2.3.2抗糖化作用 23
2.4氧化與抗氧化 25
2.4.1自由基 (Free radical) 25
2.4.2氧化壓力誘發之疾病 28
2.4.3抗氧化作用機制 30
參、研究目的 33
肆、材料與方法 34
4.1實驗架構 34
4.2實驗材料 35
4.2.1葡萄柚汁 35
4.2.2實驗藥品 35
4.2.3儀器設備 36
4.3實驗方法 38
4.3.1樣品前處理 38
4.3.2微波加熱與水浴加熱葡萄柚汁之物性分析 38
4.3.3微波加熱與水浴加熱葡萄柚汁之呋喃香豆素分析 39
4.3.4微波加熱與水浴加熱前後葡萄柚汁之抗糖化能力分析 41
4.3.5微波加熱與水浴加熱前後葡萄柚汁之抗氧化能力分析 43
4.3.6微波加熱與水浴加熱前後葡萄柚汁之抗氧化成分分析 45
4.4統計分析 46
伍、結果與討論 47
5.1物性分析 47
5.2呋喃香豆素含量分析結果探討 51
5.3抗糖化能力分析結果探討 57
5.3.1不同組別的葡萄柚汁對梅納反應之抑制作用 57
5.3.2不同組別的葡萄柚汁對 AGEs 形成之抑制作用 (BSA-Fru 糖化模型) 61
5.3.3不同組別的葡萄柚汁對糖化反應初期產物果糖胺之抑制作用 65
5.4抗氧化能力分析結果探討 68
5.4.1不同組別的葡萄柚汁之 DPPH 與 ABTS•+ 自由基清除能力 68
5.4.2不同組別的葡萄柚汁之螯合亞鐵離子能力 72
5.5抗氧化成分分析結果探討 75
5.5.1不同組別的葡萄柚汁之總酚含量 75
5.5.2不同組別的葡萄柚汁之類黃酮含量 79
5.6抗氧化能力/活性成分含量及色澤與抗糖化能力之相關性 83
陸、結論 87
柒、參考文獻 89
Ahmed, N. (2005). Advanced glycation endproducts - role in pathology of diabetic complications. Diabetes Research and Clinical Practice, 67, 3-21.
Alara, O. R., Abdurahman, N. H., & Olalere, O. A. (2020). Ethanolic extraction of flavonoids , phenolics and antioxidants from Vernonia amygdalina leaf using two-level factorial design. Journal of King Saud University - Science, 32, 7-16.
Bailey, D. G., Dresser, G., & Arnold, O. (2012). Grapefruit- medication interactions : Forbidden fruit or avoidable consequences ? Canadian Medical Association Journal, 1-8.
Bailey, D. G., Malcolm, J., Arnold, O., & Spence, J. D. (1998). Grapefruit juice - drug interactions. Br J Clin Pharmacol, 46, 101-110.
Benlloch-Tinoco, M., Igual, M., Rodrigo, D., & Martínez-Navarrete, N. (2013). Comparison of microwaves and conventional thermal treatment on enzymes activity and antioxidant capacity of kiwifruit puree. Innovative Food Science and Emerging Technologies, 19, 166-172.
Berk, Z. Introduction: history, production, trade, and utilization. (2016).Citrus Fruit Processing. Academic Press : Cambridge, USA, pp. 1-8.
Cancalon, P. F., Barros, S. M., Haun, C., & Widmer, W. W. (2011). Effect of Maturity , Processing , and Storage on the Furanocoumarin Composition of Grapefruit and Grapefruit Juice. Journal of Food Science, 76, 543-548.
Cano, M. P. (2003). Quantitative bioactive compounds assessment and their relative contribution to the antioxidant capacity of commercial orange juices. Journal of the Science of Food and Agriculture, 83, 430-439.
Chukwuma, C. I., Matsabisa, M. G., Ibrahim, M. A., Erukainure, O. L., Chabalala, M. H., & Islam, M. S. (2019). Medicinal plants with concomitant anti-diabetic and anti-hypertensive effects as potential sources of dual acting therapies against diabetes and hypertension: A review. Journal of Ethnopharmacology, 235, 329-360.
Cristóbal-luna, J. M., Álvarez-gonzález, I., & Madrigal-bujaidar, E. (2018). Grapefruit and its biomedical, antigenotoxic and chemopreventive properties. Food Chemical and Toxicology, 112, 224-234.
Cristóbal-Lunaa, J. M., Álvarez-Gonzáleza, I., Madrigal-Bujaidara, E., & Chamorro-Cevallos, G. (2018). Grapefruit and its biomedical, antigenotoxic and chemopreventive properties. Food and Chemical Toxicology, 112, 224-234.
Davies, F. S., & Albrigo, L. G. (1994). Citrus. 254pp. CAB international. Oxon, UK.
Deetae, P., Parichanon, P., Trakunleewatthana, P., & Chanseetis, C. (2012). Antioxidant and anti-glycation properties of Thai herbal teas in comparison with conventional teas. Food Chemistry, 133, 953-959.
Dewanto, V., Wu, X., Adom, K. K., & Liu, R. H. (2002). Thermal Processing Enhances the Nutritional Value of Tomatoes by Increasing Total Antioxidant Activity. Agricultural and Food Chemistry, 50, 3010-3014.
Dugrand-judek, A., Olry, A., Hehn, A., & Costantino, G. (2015). The Distribution of Coumarins and Furanocoumarins in Citrus Species Closely Matches Citrus Phylogeny and Reflects the Organization of Biosynthetic Pathways. Public Library of Science, 10.
Ellong, E. N., Billard, C., Adenet, S., Rochefort, K. (2015). Polyphenols , Carotenoids , Vitamin C Content in Tropical Fruits and Vegetables and Impact of Processing Methods. Food and Nutrition Sciences, 6, 299-313.
Esawa, Y. U., & Ohri, K. M. (2006). The Use of Heat Treatment to Eliminate Drug Interactions Due to Grapefruit Juice. Biological & Pharmaceutical Bulletin, 29, 2274-2278.
Esawa, Y. U., & Ohri, K. M. (2006). UV-Irradiated Grapefruit Juice Loses Pharmacokinetic Interaction with Nifedipine in Rats. Biological & Pharmaceutical Bulletin, 29, 1286-1289.
Fang, Y., Yang, S., & Wu, G. (2002). Free Radicals, Antioxidants, and Nutrition. Nutrition, 18, 872-879.
Farsi, D. A., Harris, C. S., Reid, L., Bennett, S. A. L., Haddad, P. S., Martineau, L. C., & Arnason, J. T. (2008). Inhibition of Non-enzymatic Glycation by Silk Extracts from a Mexican Land Race and Modern Inbred Lines of Maize ( Zea mays ). Phytotherapy Research, 22, 108-112.
Feng, X., Hua, Y., Zhang, C., Kong, X., Li, X., & Chen, Y. (2020). Effect of soaking conditions on the formation of lipid derived free radicals in soymilk. Food Chemistry, 315, 126237.
Freund, M. A., Chen, B., & Decker, E. A. (2018). The Inhibition of Advanced Glycation End Products by Carnosine and Other Natural Dipeptides to Reduce Diabetic and Age-Related Complications. Food Science and Food Safety, 17, 1367-1378.
Fu, Q. (2012). Formation of Nε- ( Carboxymethyl ) lysine in Saccharide-Lysine Model Systems by Different Heat Treatments Formation of Nε- ( Carboxymethyl ) lysine in Saccharide-Lysine Model Systems by Different Heat Treatments. International Journal of Food Engineering, 8, 1556-3758.
Gama, J. T., Sylos, C. M. (2007). Effect of thermal pasteurization and concentration on carotenoid composition of Brazilian Valencia orange juice. Food Chemistry,100, 1686-1690.
Gene, P., Kapoor, D., Singh, S., Kumar, V., Romero, R., & Prasad, R. (2019). Antioxidant enzymes regulation in plants in reference to reactive oxygen species ( ROS ) and reactive nitrogen species ( RNS ). Plant Gene, 19, 100182.
Girennavar, B., Jayaprakasha, G. K., & Patil, B. S. (2007). Potent Inhibition of Human Cytochrome P450 3A4 , 2D6 , and 2C9 Isoenzymes by Grapefruit Juice and Its Furocoumarins. Food Chemistry and Toxicology, 72, 417-421.
Hanley, M. J., Cancalon, P., Widmer, W. W., & Greenblatt, D. J. (2011). The effect of grapefruit juice on drug disposition. Expert opinion on drug metabolism & toxicology, 7, 267-286.
Hayat, K., Zhang, X., Farooq, U., Abbas, S., Xia, S., & Jia, C. (2010). Effect of microwave treatment on phenolic content and antioxidant activity of citrus mandarin pomace. Food Chemistry, 123, 423-429.
Hung, W. L., Suh, J. H., Wang, Y. (2017). Chemistry and health effects of furanocoumarins in grapefruit. Journal of Food and Drug Analysis, 25, 71-83.
Hung, W., Suh, J. H., & Wang, Y. (2016). Chemistry and health effects of furanocoumarins in grapefruit. Journal of Food and Drug Analysis, 25, 71-83.
Igual, M., & Camacho, M. M. (2010). Effect of thermal treatment and storage on the stability of organic acids and the functional value of grapefruit juice. Food Chemistry, 118, 291-299.
Igual, M., Contreras, C., Camacho, M. M., Martínez Navarrete, N. (2013). Effect of Thermal Treatment and Storage Conditions on the Physical and Sensory Properties of Grapefruit Juice. Food and Bioprocess Technology, 7, 191-203.
Iu, D. O. L. (2007). Effect of Heat Treatment on the Phenolic Compounds and Antioxidant Capacity of Citrus Peel Extract. Food Chemical and Toxicology, 55, 330-335.
Jacob, R. A. (1995). The integrated antioxidant system. Nutrition Research, 15, 755-766.
Jairajpuri, D. S., Fatima, S., & Jairajpuri, Z. S. (2015). Glycation Induced Physicochemical Changes in Low-Density Lipoprotein and Its Role in Promoting Cholesterol Accumulation in Macrophages along with Antiglycation Effect of Aminoguanidine. Advances in Biological Chemistry, 5, 203-214.
Jing, H., & Kitts, D. D. (2000). Comparison of the antioxidative and cytotoxic properties of glucose- lysine and fructose-lysine Maillard reaction products. Food Research International, 33, 509-516.
Kaur, C., Khurdiya, D. S., Pal, R. K., & Kapoor, H. (1999). Effect of microwave heating and conventional processing on the nutritional qualities of tomato juice. Food Science and Technology, 36, 331-333.
Kelebek, H. (2010). Sugars, organic acids, phenolic compositions and antioxidant activity of Grapefruit ( Citrus paradisi ) cultivars grown in Turkey. Industrial Crops & Products, 32, 269-274.
Khan, M., Liu, H., Wang, J., & Sun, B. (2020). Inhibitory effect of phenolic compounds and plant extracts on the formation of advance glycation end products : A comprehensive review. Food Research International, 130, 108933.
Kuda, T., Eda, M., Kataoka, M., Nemoto, M., Kawahara, M., Oshio, S., …Kimura, B. (2016). Anti-glycation properties of the aqueous extract solutions of dried algae products and effect of lactic acid fermentation on the properties. Food Chemistry, 192, 1109-1115.
Lin, Y., Sheu, M., Huang, C., & Ho, H. (2009). Development of a Reversed-Phase High-Performance Liquid Chromatographic Method for Analyzing Furanocoumarin Components in Citrus Fruit Juices. Journal of chromatographic science, 47, 211-215.
Liu, Y. Q., Heying, E., Sherry, A., & Tanumihardjo, S. A. (2012). History, Global Distribution, and Nutritional Importance of Citrus Fruits. Food Science and Food Safety, 11, 530-545.
Mahomoodally, F., Aumeeruddy-elalfi, Z., Venugopala, K. N., & Hosenally, M. (2019). Antiglycation, comparative antioxidant potential, phenolic content and yield variation of essential oils from 19 exotic and endemic medicinal plants. Saudi Journal of Biological Sciences, 26, 1779-1788.
Martins, S. I. F. S., Jongen, W. M. F., & van Boekel, M. A. J. S. (2001). A review of Maillard reaction in food and implications to kinetic modelling. Trends in Food Science & Technology, 11, 364-373.
Messer, A., Raquet, N., Lohr, C., & Schrenk, D. (2012). Major furocoumarins in grapefruit juice II: Phototoxicity, photogenotoxicity, and inhibitory potency vs. cytochrome P450 3A4 activity. Food and Chemical Toxicology, 50, 756-760.
Miller, N. J., Rice-evans, C., Davies, M., Gopinathan, V., & Milner, A. (1993). A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates . Clinical Science, 84, 407-412.
Murunga, A. N., Miruka, D. O., Driver, C., Nkomo, F. S., Snazo, Z., Cobongela, Z., & Owira, P. M. O. (2016). Grapefruit Derived Flavonoid Naringin Improves Ketoacidosis and Lipid Peroxidation in Type 1 Diabetes Rat Model. Public Library of Science, 11, 1-16.
Nicoli, M. C., Anese, M., & Parpinel, M. (1999). Influence of processing on the antioxidant properties of fruit and vegetables. Trends in Food Science & Technology, 10, 94-100.
Oboh, G., & Ademosun, A. O. (2012). Characterization of the antioxidant properties of phenolic extracts from some citrus peels. J Food Sci Technol, 49, 729-736.
Oliveira, A. C., Valentim, I. B., Silva, C. A., Bechara, E. J. H., Barros, M. P., Mano, C. M., & Goulart, M. O. F. (2009). Total phenolic content and free radical scavenging activities of methanolic extract powders of tropical fruit residues. Food Chemistry, 115, 469-475.
Owira, P. M. O. (2016). Grapefruit juice improves glucose intolerance in streptozotocin ‑ induced diabetes by suppressing hepatic gluconeogenesis. European Journal of Nutrition, 55, 631-638.
Paine, M. F., Criss, A. B., & Watkins, P. B. (2005). Two Major Grapefruit Juice Components Differ in Time to Onset of Intestinal CYP3A4 Inhibition. Journal of Pharmacology and Experimental Therapeutics, 312, 1151-1160.
Pan, Y., He, C., Wang, H., Ji, X., Wang, K., & Liu, P. (2010). Antioxidant activity of microwave-assisted extract of Buddleia officinalis and its major active component. Food Chemistry, 121, 497-502.
Papandreou, D., & Phily, A. (2014). An Updated Mini Review on Grapefruit : Interactions with Drugs , Obesity and Cardiovascular Risk Factors. Food and Nutrition Sciences, 5, 376-381.
Peter, T. G., Tamsin, A.C. W., Donald, B. M., & Garry, G. D. (2000). The relative contributions of vitamin C, carotenoids and phenolics to the antioxidant potential of fruit juices. Food Chemistry, 68, 471-474.
Pirmohamed, M. (2013). Drug-grapefruit juice interactions. British Medical Journal, 346, 1-3.
Rapisarda, P., Tomaino, A., Cascio, R. L., Bonina, F., Pasquale, A. D., & Saija, A. (1999). Antioxidant Effectiveness As Influenced by Phenolic Content of Fresh Orange Juices. Agricultural and Food Chemistry, 47, 4718-4723.
Ravichandran, G., Kumar, D., Raju, K., & Elangovan, A. (2019). Food advanced glycation end products as potential endocrine disruptors : An emerging threat to contemporary and future generation. Environment International, 123, 486-500.
Shulman, M., Cohen, M., Soto-gutierrez, A., Yagi, H., Wang, H., Lee-parsons, C. W., …Nahmias, Y. (2011). Enhancement of Naringenin Bioavailability by Complexation with Hydroxypropoyl-β-Cyclodextrin. Public Library of Science, 6.
Stratakos, A. C., Delgado-Pando, G., Linton, M., Patterson, M. F., & Koidis, A. (2016). Industrial scale microwave processing of tomato juice using a novel continuous microwave system. Food Chemistry, 190, 622-628.
Uribarri, J., Woodruff, S., Goodman, S., Cai, W., Chen, X. U. E., Pyzik, R., …Vlassara, H. (2010). Advanced Glycation End Products in Foods and a Practical Guide to Their Reduction in the Diet. American Dietetic Association, 110, 911-916.
Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T. D., Mazur, M., & Telser, J. (2007).Free radicals and antioxidants in normal physiological functions and human disease. International Joural of Biochemisty & Cell Biology, 39, 44-84.
Vasconcelos, S.M.L., Goulart, M.O.F., Moura, J.B.F., Manfredini, V., Benfato, M.S., Kubota, L.T. (2007). Reactive oxygen and nitrogen species, antioxidants and markers of oxidative damage in human blood: Main analytical methods for their determination. Química Nova, 30, 1323-1338.
Wang, J., Vanga, S. K., & Raghavan, V. (2019). High-intensity ultrasound processing of kiwifruit juice : Effects on the ascorbic acid, total phenolics, fl avonoids and antioxidant capacity. Food Science and Technology, 107, 299-307.
Wang, W., Ma, X., Xu, Y., Cao, Y., Jiang, Z., Ding, T., Ye, X., & Liu, D. (2015). Ultrasound-assisted heating extraction of pectin from grapefruit peel: Optimization and comparison with the conventional method. Food Chemistry, 178, 106-114.
Wang, W., Yagiz, Y., Buran, T. J., Nunes, N., & Gu, L. (2011). Phytochemicals from berries and grapes inhibited the formation of advanced glycation end‐products by scavenging reactive carbonyls. Food Research International, 44, 2666-2673.
Wei, Q., Liu, T., & Sun, D. (2018). Advanced glycation end-products (AGEs) in foods and their detecting techniques and methods: A review. Trends in Food Science & Technology, 82, 32-45.
Widmer, W. W., & Haun, C. (2005). Variation in Furanocoumarin Content and New Furanocoumarin Dimers in Commercial Grapefruit ( Citrus paradisi Macf .) Juices. Food Chemical and Toxicology, 70, 307-312.
Wu, C. H., & Yen, G. C. (2005). Inhibitory Effect of Naturally Occurring Flavonoids on the Formation of Advanced Glycation Endproducts. Agricultural and Food Chemistry, 53, 3167-3173.
Wu, C. H., Huang, S. M., Lin, J. A., & Yen, G. C. (2011). Inhibition of advanced glycation end product formation by foodstuffs. Food & Function, 2, 224-234.
Wu, J., Hsieh, C., Wang, H., & Chen, H. (2009). Inhibitory effects of guava ( Psidium guajava L .) leaf extracts and its active compounds on the glycation process of protein. Food Chemistry, 113, 78-84.
Xu, Y., & Pan, S. (2013). Effects of various factors of ultrasonic treatment on the extraction yield of all-trans-lycopene from red grapefruit (Citrus paradise Macf.). Ultrasonics Sonochemistry, 20, 1026-1032.
Yeh, W., Hsia, S., Lee, W., & Wu, C. (2016). Polyphenols with antiglycation activity and mechanisms of action : A review of recent findings. Journal of Food and Drug Analysis, 25, 84-92.
Younus, H., & Anwar, S. (2016). Prevention of non-enzymatic glycosylation (glycation): Implication in the treatment of diabetic complication. International Journal of Health Sciences, 10, 262-277.
丁克祥 (1996)。SOD 生物醫學淺論。台北市:藝軒圖書出版社。。
施又甄。2017。探討咖啡渣於不同萃取及處理方法之抗氧化及抗糖化特性。國立嘉義大學食品科學研究所碩士論文。嘉義。台灣。
許世弦。2004。不同套袋處理對Ruby葡萄柚果實顏色、主要果皮色素組成與果實品質之影響。國立嘉義大學園藝學研究所碩士論文。嘉義。台灣。
陳玉倩、楊瑛碧 (2013)。葡萄柚與藥物導致的不良反應探討。藥學雜誌,29(4),106-110。
陳明造、陳懷群、陳凱群 (2014)。機能性食品科學。台中市:富林出版社。
黃宗賢 (2008)。葡萄柚汁之藥物交互作用。藥學雜誌
,24(4),128-134。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊