[1] 林江豪,周咏梅,陽愛民,王偉,结合詞向量和聚類算法的新闻評論話题演進分析,計算機工程與科學,2016。
[2] 黃仁鵬,張貞瑩,運用詞彙權重技術於自動文件摘要之研究,中華民國資訊管理學報,21(4),2014。
[3] 楊宗義,教育統計學[M],科學技術文獻出版社,1990。
[4] 賈曉婷,王名揚,曹宇,结合Doc2Vec与改进聚类算法的中文单文档自动摘要方法研究,數據分析與知識發現,2018。
[5] 劉政璋,以概念分群為基礎之新聞事件自動摘要,國立交通大學資訊科學研究所碩士論文,2005。[6] 劉娜,路瑩,唐曉君,李明霞,基于LDA重要主题的多文檔自動摘要算法,計算機科學與探索,2015。
[7] 魏玲玉,曾守正,以文件倉儲概念實現動態群聚與多重文件摘要之研究-以中文電子新聞為例,資訊管理學報,13(3),2006。
[8] M. Allahyari, S. Pouriyeh, M. Assefi, S. Safaei, E. D. Trippe, J. B. Gutierrez, and K. Kochut, "Text Summarization Techniques: A Brief Survey," International Journal of Advanced Computer Science and Applications, vol. 8, no. 10, 2017.
[9] D. M. Blei, A. Y. Ng, and M. I. Jordan. "Latent Dirichlet Allocation," Journal of Machine Learning Research, vol. 3, pp. 933-1022, 2003.
[10] G. Chao, S. Sun, and J. Bi, "A Survey on Multi-view Clustering," arXiv:1712.06246, 2017.
[11] S. Chopra, M. Auli, and A. M. Rush, "Abstractive Sentence Summarization with Attentive Recurrent Neural Networks," Proceedings of NAACL-HLT 2016, pp. 93-98, 2016.
[12] D. Das and A. F. T. Martins, "A Survey on Automatic Text Summarization," Literature Survey for the Language and Statistics II course at CMU, 2007.
[13] J. P. Guilford, Fundamental Statistics in Psychology and Education. New York: Mcgraw-Hill, 1965.
[14] R. Likert, A Technique for the Measurement of Attitudes, New York: The Science Press, vol. 22, no. 140, pp.5-55, 1932.
[15] K. W. Lim and W. Buntine. "Twitter Opinion Topic Model: Extracting Product Opinions from Tweets by Leveraging Hashtags and Sentiment Lexicon," Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management. ACM, 2014.
[16] J. Liu, X. Ren, J. Shang, T. Cassidy, C. R. Voss, and J. Han, "Representing Documents via Latent Keyphrase Inference," Proceedings of the 25th International Conference on World Wide Web, 2016.
[17] P. J. Liu, M. Saleh, E. Pot, B. Goodrich, R. Sepassi, L. Kaiser, and N. Shazeer, "Generating Wikipedia by Summarizing Long Sequences," arXiv:1801.10198, 2018.
[18] H. P. Luhn, "The Automatic Creation of Literature Abstracts," IBM Journal of Research and Development, vol. 2, no. 2, pp. 159–165, 1958.
[19] G. Mesnil, T. Mikolov, M. Ranzato, and Y. Bengio, "Ensemble of Generative and Discriminative Techniques for Sentiment Analysis of Movie Reviews," arXiv:1412.5335, 2014.
[20] A. M. Rush, S. Chopra, and J. Weston, "A Neural Attention Model for Sentence Summarization," Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pp. 379-389, 2015.
[21] J. MacQueen, "Some Methods for Classification and Analysis of Multivariate Observations," Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, pp. 218-297, 1967.
[22] T. Mikolov, K. Chen, G. Corrado, and J. Dean, "Efficient Estimation of Word Representations in Vector Space," arXiv:1301.3781v3, 2013.
[23] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, "Distributed Representations of Words and Phrases and Their Compositionality," Advances in Neural Information Processing Systems (NIPS 2013), 2013.
[24] T. Mikolov, "Distributed Representations of Sentences and Documents," Proceedings of the 31st International Conference on Machine Learning, 2014.
[25] J. C. Nunnally and J. H. Bernstein, Psychometric Theory, New York: McGraw Hill, vol. 19, no. 3, pp.303-305, 1994.
[26] K. D. Onal, Y. Zhang, I. S. Altingovde, M. M. Rahman, P. Karagoz, and A. Braylan, "Neural Information Retrieval: At the End of the Early Years," Information Retrieval Journal 21, pp. 111-182, 2018.
[27] L. Page, S. Brin, R. Motwani, and T. Winograd, "The PageRank Citation Ranking: Bringing Order to the Web," Stanford InfoLab, 1999.
[28] J. Pennington, R. Socher, and C. D. Manning, "Glove: Global Vectors for Word Representation," Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2014.
[29] J. L. Rodgers and W. A. Nicewander, “Thirteen Ways to Look at the Correlation Coefficient,” The American Statistician, vol. 42, no. 1, p. 59, 1988.
[30] A. See, P. J. Liu, and C. D. Manning. "Get to the Point: Summarization with Pointer-Generator Networks," arXiv:1704.04368, 2017.
[31] J. Tang, M. Qu, and Q. Mei, "PTE: Predictive Text Embedding through Large-Scale Heterogeneous Text Networks," Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2015.
[32] Y. S. Wang and H. Y. Lee, "Learning to Encode Text as Human-Readable Summaries using Generative Adversarial Networks," arXiv:1810.02851, 2018.
[33] Summarization, "Taming Recurrent Neural Networks for Better Summarization," http://www.abigailsee.com/2017/04/16/taming-rnns-for-better-summarization.html.
[34] Beautifulsoup4, https://www.crummy.com/software/BeautifulSoup/bs4/doc/.
[35] Scikit-learn: Machine learning in Python. https://scikit-learn.org/stable/.
[36] SPSS, https://www.ibm.com/tw-zh/analytics/spss-statistics-software.
[37] TextTeaser, https://github.com/IndigoResearch/textteaser.