跳到主要內容

臺灣博碩士論文加值系統

(44.200.171.156) 您好!臺灣時間:2023/03/22 01:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝欣怡
研究生(外文):Hsieh Hsin-Yi
論文名稱:根際促生菌改善作物非生物性逆境耐受性
論文名稱(外文):Application of plant growth-promoting rhizobacteria in plant abiotic stress tolerance
指導教授:莊慧文
指導教授(外文):Chuang, Huey-wen
學位類別:碩士
校院名稱:國立嘉義大學
系所名稱:生物農業科技學系研究所
學門:農業科學學門
學類:農業技術學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:57
中文關鍵詞:根際促生菌代謝產物非生物性逆境
外文關鍵詞:PGPRmetabolitesabiotic stress
相關次數:
  • 被引用被引用:0
  • 點閱點閱:212
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
根菌促生菌 (Plant growth-promoting rhizobacteria, PGPR) 可藉由不同的機制影響植物生長及增加對生物及非生物性逆境抗性。本次研究中使用從土壤篩出的一株綠膿桿菌 (Pseudomonas Y1)及另一株芽孢桿菌 (Bacillus S4),分別進行Pseudomonas Y1及Bacillus S4的蛋白水解酶活性及其代謝產物 (Y1-及 S4-M) 的抗氧化能力、螯鐵能力分析。並應用至重要的經濟作物蝴蝶蘭與香蕉苗測試Y1-M 與S4-M 對於植物生長及非生物性逆境的影響。由實驗結果分析,Y1-M 與S4-M 本身都具有良好的抗氧化能力而對蛋白水解酶活性及螯合二價鐵能力之影響為Pseudomonas Y1較高。在植物生長上,處理Y1-M及 S4-M 皆可增加兩種植物的葉綠素含量、總糖含量、抗氧化酵素活性,並提高植物體內木質素含量、二次代謝物質生合成,以促進植物生長。在非生物性逆境方面,處理Y1-M及 S4-M可藉由增加植物的抗氧化能力與二次代謝物質生合成,使植物細胞膜的穩定性增加,降低了細胞膜脂質過氧化的產物丙二醛 (malondialdehyde,MDA)、電子滲透率,以增加植物的對低溫、乾旱及鹽分逆境的耐受性,並加快了香蕉苗在乾旱逆境後新生葉片生長速度與光合作用效率。由香蕉的西方點墨法的結果可以得知,以Y1-M及 S4-M處理可增加植物逆境相關蛋白dehydrin和autophagy protein (ATG5) 以及抗氧化酵素superoxide dismutase (SOD)、catalase (CAT) 的蛋白累積量。這些結果顯示,Y1-M及 S4-M可增加植物抗氧化能力及二次代謝物質,使植物對非生物性逆境的耐受性提升。
Plant growth-promoting rhizobacteria (PGPR) had been reported to promote plant growth and improve plant resistant to biotic and abiotic stress through different kinds of mechanisms. In this study, strains of Pseudomonas (Y1) and Bacillus (S4) isolated from soil, and analyzed their protease activity, antioxidant activity and ion chelating activity of the metabolites (Y1-M and S4-M). We treated orchid and seedlings with Y1-M and S4-M to detect the effects on plant growth and response to abiotic stress. Our results showed that both Y1-M and S4-M exhibited antioxidant activity and Y1 exhibited better protease activity and ferrous ion chelating activity than S4. In term of plant growth test, both orchid and banana treated with Y1-M and S4-M increased chlorophyll content, total sugar content ,antioxidant enzyme activity, lignin content and induced plant secondary metabolism biosynthesis. As to tolerance to abiotic stress, orchid and banana treated with Y1-M and S4-M improved tolerance of cold stress, drought stress and salt stress through enhanced plants antioxidant activities and secondary metabolites biosynthesis. The results showed that treated plants improved cell membrane stability, reduced the accumulation of malondialdehyde (MDA), decreased electro leakage and enhanced the total new leaves numbers and photosynthesis efficiency of banana after recovering from drought stress. The western blot results of banana showed that treated plants increased stress-related proteins dehydrin, autophagy protein (ATG5) and antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) proteins accumulation, As a result, applied Y1-M and S4-M on plants could improve plant growth, enhance antioxidant activity, increase plant secondary metabolites biosynthesis and improve plants tolerance to abiotic stress.
目錄 1
圖次 3
中文摘要 4
英文摘要 5
壹、 前言 6
貳、 材料與實驗方法 14
實驗材料 14
一、 細菌genomic DNA 萃取 14
二、 細菌代謝成分抗氧化能力分析 15
三、 細菌蛋白水解酶活性分析 17
四、 Y1及S4代謝成分(Y1-M及S4-M)製備 17
五、 植物生長與生理分析 18
六、 植物生理試驗 18
七、 Western blot 22
八、 統計分析 23
參、 結果 24
一、 Pseudomonase Y1 及Bacillus S4 親源關係 24
二、 Pseudomonase Y1 及Bacillus S4 代謝物質分析 24
三、 Y1-M 及S4-M 對於蝴蝶蘭生長之影響 25
四、 Y1-M 及 S4-M 增加蝴蝶蘭對於低溫的耐受性 26
五、 Y1-M 及 S4-M 對於香蕉生長之影響 26
六、 Y1-M 與S4-M 增加香蕉對乾旱逆境的耐受性 27
七、 Y1-M 及S4-M 增加香蕉鹽分逆境的耐受性 28
八、 Y1-M 及S4-M 影響香蕉不同蛋白之表達 28
肆、 討論 30
伍、 參考文獻 34

圖次
圖1、Pseudomonase Y1 及 Bacillus S4 親源樹 44
圖2、Y1-M 及S4-M 代謝物質抗氧化能力比較 45
圖3、Y1-PH 及S4-PH 蛋白酶活性比較 46
圖4、Y1-M 及S4-M 對於蝴蝶蘭生長及氧化逆境影響 47
圖5、Y1-M 及S4-M 對於蝴蝶蘭二次代謝物質及木質素生合成之影響 48
圖6、Y1-M 及S4-M 增加蝴蝶蘭對於低溫逆境的耐受性 49
圖7、Y1-M 及S4-M 對於香蕉生長影響 50
圖8、Y1-M 及S4-M 對於香蕉生長及氧化逆境影響 51
圖9、Y1-M 及S4-M 對於香蕉二次代謝物質及木質素生合成之影響 52
圖10、Y1-M 及S4-M 對於香蕉乾旱逆境之影響 53
圖11、Y1-M 及S4-M 增加香蕉乾旱逆境後復水回復速度 54
圖12、Y1-M 及S4-M 增加香蕉乾旱逆境的耐受性 55
圖13、Y1-M 及S4-M 增加香蕉鹽分逆境的耐受性 56
圖14、Y1-M及S4-M 處理香蕉影響不同蛋白之表達量 57
Aamir, M., et al. (2019). "Trichoderma erinaceum Bio-Priming Modulates the WRKYs Defense Programming in Tomato Against the Fusarium oxysporum f. sp. lycopersici (Fol) Challenged Condition." Frontiers in Plant Science 10(911).
Apel, K. and H. Hirt (2004). "REACTIVE OXYGEN SPECIES:
Metabolism, Oxidative Stress, and Signal Transduction." Annual review of plant biology 55(1): 373-399.
Arora, D. S. and P. Chandra (2010). "Assay of antioxidant potential of two Aspergillus isolates by different methods under various physio-chemical conditions." Brazilian Journal of Microbiology 41: 765-777.
Assaha, D. V. M., et al. (2017). "The Role of Na+ and K+ Transporters in Salt Stress Adaptation in Glycophytes." Frontiers in Physiology 8(509).
Backer, R., et al. (2018). "Plant Growth-Promoting Rhizobacteria: Context, Mechanisms of Action, and Roadmap to Commercialization of Biostimulants for Sustainable Agriculture." Frontiers in Plant Science 9(1473).
Battacharyya, D., et al. (2015). "Seaweed extracts as biostimulants in horticulture." Scientia Horticulturae 196: 39-48.
Bhattacharyya, P. N. and D. K. Jha (2012). "Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture." World Journal of Microbiology and Biotechnology 28(4): 1327-1350.
Blokhina, O., et al. (2003). "Antioxidants, Oxidative Damage and Oxygen Deprivation Stress: a Review." Annals of Botany 91(2): 179-194.
Calvo, P., et al. (2014). "Agricultural uses of plant biostimulants." Plant and Soil 383(1): 3-41.
Canellas, L. P., et al. (2015). "Humic and fulvic acids as biostimulants in horticulture." Scientia Horticulturae 196: 15-27.
Charest, M. H., et al. (2005). "Effects of the humic substances of de-inking paper sludge on the antagonism between two compost bacteria and Pythium ultimum." FEMS Microbiol Ecol 52(2): 219-227.
Chatterjee, P., et al. (2017). "Beneficial Soil Bacterium Pseudomonas frederiksbergensis OS261 Augments Salt Tolerance and Promotes Red Pepper Plant Growth." Frontiers in Plant Science 8(705).
Chauhan, H., et al. (2015). "Novel plant growth promoting
rhizobacteria—Prospects and potential." Applied Soil Ecology 95: 38-53.
Choudhary, D. K., et al. (2007). "Induced systemic resistance (ISR) in plants: mechanism of action." Indian journal of microbiology 47(4): 289-297.
Colla, G., et al. (2017). "Biostimulant Action of Protein Hydrolysates: Unraveling Their Effects on Plant Physiology and Microbiome." Frontiers in Plant Science 8 (2202).
Colla, G., et al. (2015). "Protein hydrolysates as biostimulants in horticulture." Scientia Horticulturae 196: 28-38.
Colla, G. and Y. Rouphael (2015). "Biostimulants in horticulture." Scientia Horticulturae 196: 1-2.
Cruz de Carvalho, M. H. (2008). "Drought stress and reactive oxygen species: Production, scavenging and signaling." Plant Signaling & Behavior 3(3): 156-165.
Debnath, M., et al. (2011). "An omics approach to understand the plant abiotic stress." Omics 15(11): 739-762.
Dionisio-Sese, M. L. and S. Tobita (1998). "Antioxidant responses of rice seedlings to salinity stress." Plant Science 135(1): 1-9.
Dische, Z. (1958). "Color reactions of carbohydrates." Methods in Carbohydrate Chemistry 1: 475-514.
du Jardin, P. (2015). "Plant biostimulants: Definition, concept, main categories and regulation." Scientia Horticulturae 196: 3-14.
Fahad, S., et al. (2015). "Potential role of phytohormones and plant growth-promoting rhizobacteria in abiotic stresses: consequences for changing environment." Environmental Science and Pollution Research 22(7): 4907-4921.
Gómez-Merino, F. C. and L. I. Trejo-Téllez (2015). "Biostimulant activity of phosphite in horticulture." Scientia Horticulturae 196: 82-90.
Glick, B. R., et al. (1998). "A Model For the Lowering of Plant Ethylene Concentrations by Plant Growth-promoting Bacteria." Journal of Theoretical Biology 190(1): 63-68.
Gururani, M. A., et al. (2013). "Plant Growth-Promoting Rhizobacteria Enhance Abiotic Stress Tolerance in Solanum tuberosum Through Inducing Changes in the Expression of ROS-Scavenging Enzymes and Improved Photosynthetic Performance." Journal of Plant Growth Regulation 32(2): 245-258.
Habib, S. H., et al. (2016). "Plant Growth-Promoting Rhizobacteria Enhance Salinity Stress Tolerance in Okra through ROS-Scavenging Enzymes." BioMed Research International 2016: 6284547.
Herridge, D. F., et al. (2008). "Global inputs of biological nitrogen fixation in agricultural systems." Plant and Soil 311(1): 1-18.
Huang, H., et al. (2019). "Mechanisms of ROS Regulation of Plant Development and Stress Responses." Frontiers in Plant Science 10(800).
Jadhav, G., et al. (2010). "Isolation and characterization of salt-tolerant nitrogen-fixing microorganisms from food." EurAsian Journal of Biosciences 4: 33-40.
Janská, A., et al. (2010). "Cold stress and acclimation - what is important for metabolic adjustment?" Plant Biol (Stuttg) 12(3): 395-405.
Jones, D. L., et al. (2004). "Plant and mycorrhizal regulation of rhizodeposition." New Phytologist 163(3): 459-480.
Karkera, A., et al. (2013). "Characterization of abiotic stress tolerant Pseudomonas spp. occurring in Indian soils." Journal of Biological Control 27: 319–328.
Khan, W., et al. (2013). "Ascophyllum nodosum Extract and Its Organic Fractions Stimulate Rhizobium Root Nodulation and Growth of Medicago sativa (Alfalfa)." Communications in Soil Science and Plant Analysis 44(5): 900-908.
Khan, W., et al. (2012). "Commercial Extract of Ascophyllum nodosum Improves Root Colonization of Alfalfa by Its Bacterial Symbiont Sinorhizobium meliloti." Communications in Soil Science and Plant Analysis 43(18): 2425-2436.
Kijne, J. W. (2006). "Abiotic stress and water scarcity: Identifying and resolving conflicts from plant level to global level." Field Crops Research 97(1): 3-18.
Kim, J. S., et al. (2011). "Isolation and identification of sea buckthorn (Hippophae rhamnoides) phenolics with antioxidant activity and α-glucosidase inhibitory effect." J Agric Food Chem 59(1): 138-144.
Kim, K., et al. (2014). "Alleviation of salt stress by enterobacter sp. EJ01 in tomato and Arabidopsis is accompanied by up-regulation of conserved salinity responsive factors in plants." Mol Cells 37(2): 109-117.
Kloepper, J. W., et al. (1980). "Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria." Nature 286(5776): 885-886.
López-Bucio, J., et al. (2015). "Trichoderma as biostimulant: exploiting the multilevel properties of a plant beneficial fungus." Scientia Horticulturae 196: 109-123.
Lee, Y. S., et al. (2016). "Microwave-Alkali Treatment of Chicken Feathers for Protein Hydrolysate Production." Waste and Biomass Valorization 7(5): 1147-1157.
Liu, Y., et al. (2019). "Cold acclimation by the CBF-COR pathway in a changing climate: Lessons from Arabidopsis thaliana." Plant cell reports 38(5): 511-519.
Lowry, O. H., et al. (1951). "Protein measurement with the Folin phenol reagent." J Biol Chem 193(1): 265-275.
Miller, G., et al. (2010). "Reactive oxygen species homeostasis and signalling during drought and salinity stresses." Plant Cell Environ 33(4): 453-467.
Mittler, R. (2017). "ROS Are Good." Trends in plant science 22(1): 11-19.
Nadeem, S. M., et al. (2014). "The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments." Biotechnology Advances 32(2): 429-448.
Nardi, S., et al. (2000). "Chemical and Biochemical Properties of Humic Substances Isolated from Forest Soils and Plant Growth." Soil Science Society of America Journal 64(2): 639-645.
Numan, M., et al. (2018). "Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: A review." Microbiol Res 209: 21-32.
Ortíz-Castro, R., et al. (2009). "The role of microbial signals in plant growth and development." Plant Signaling & Behavior 4(8): 701-712.
Osakabe, Y., et al. (2014). "Response of plants to water stress." Front Plant Sci 5: 86.
Panda, S., et al. (2003). "Does aluminium phytotoxicity induce oxidative stress in green gram (Vigna radiata)? Bulg J Plant Physiol." Bulg. J. Plant Physiol. 29.
Parrado, J., et al. (2008). "Production of a carob enzymatic extract: Potential use as a biofertilizer." Bioresource Technology 99(7): 2312-2318.
Paul, K., et al. (2019). "A Combined Phenotypic and Metabolomic Approach for Elucidating the Biostimulant Action of a Plant-Derived Protein Hydrolysate on Tomato Grown Under Limited Water Availability." Frontiers in Plant Science 10(493).
Peng, P.-H., et al. (2014). "Cold Response in Phalaenopsis aphrodite and Characterization of PaCBF1 and PaICE1." Plant and Cell Physiology 55(9): 1623-1635.
Peterhansel, C., et al. (2010). "Photorespiration." The arabidopsis book 8: e0130-e0130.
Piccolo, A. and M. Spiteller (2003). "Electrospray ionization mass spectrometry of terrestrial humic substances and their size fractions." Analytical and Bioanalytical Chemistry 377(6): 1047-1059.
Pichyangkura, R. and S. Chadchawan (2015). "Biostimulant activity of chitosan in horticulture." Scientia Horticulturae 196: 49-65.
Pinedo, I., et al. (2015). "Burkholderia phytofirmans PsJN induces long-term metabolic and transcriptional changes involved in Arabidopsis thaliana salt tolerance." Frontiers in Plant Science 6(466).
Rijavec, T. and A. Lapanje (2016). "Hydrogen Cyanide in the Rhizosphere: Not Suppressing Plant Pathogens, but Rather Regulating Availability of Phosphate." Frontiers in Microbiology 7(1785).
Rouphael, Y. and G. Colla (2020). "Editorial: Biostimulants in Agriculture." Frontiers in Plant Science 11(40).
Rouphael, Y., et al. (2015). "Arbuscular mycorrhizal fungi act as biostimulants in horticultural crops." Scientia Horticulturae 196: 91-108.
Ruzzi, M. and R. Aroca (2015). "Plant growth-promoting rhizobacteria act as biostimulants in horticulture." Scientia Horticulturae 196: 124-134.
Sandhya, V., et al. (2010). "Effect of plant growth promoting Pseudomonas spp. on compatible solutes, antioxidant status and plant growth of maize under drought stress." Plant Growth Regulation 62(1): 21-30.
Sarma, R. K. and R. Saikia (2014). "Alleviation of drought stress in mung bean by strain Pseudomonas aeruginosa GGRJ21." Plant and Soil 377(1): 111-126.
Savvas, D. and G. Ntatsi (2015). "Biostimulant activity of silicon in horticulture." Scientia Horticulturae 196: 66-81.
Shao, H. B., et al. (2008). "Water-deficit stress-induced anatomical changes in higher plants." C R Biol 331(3): 215-225.
Shekhawat, U. K. S., et al. (2011). "MusaDHN-1, a novel multiple stress-inducible SK3-type dehydrin gene, contributes affirmatively to drought- and salt-stress tolerance in banana." Planta 234(5): 915.
Shen, Q., et al. (2010). "Antioxidant activity in vitro of the selenium-contained protein from the Se-enriched Bifidobacterium animalis 01." Anaerobe 16(4): 380-386.
Steenhoudt, O. and J. Vanderleyden (2000). "Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects." FEMS Microbiology Reviews
24(4): 487-506.
Surendar, K. K., et al. (2013). "Influence of water stress on antioxidative enzymes and yield of banana cultivars and hybrids." Pak J Biol Sci 16(24): 1997-2002.
Tiwari, S., et al. (2016). "Pseudomonas putida attunes
morphophysiological, biochemical and molecular responses in Cicer arietinum L. during drought stress and recovery." Plant Physiology and Biochemistry 99: 108-117.
Tripathy, B. C. and R. Oelmüller (2012). "Reactive oxygen species generation and signaling in plants." Plant Signaling & Behavior 7(12): 1621-1633.
Van Oosten, M. J., et al. (2017). "The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants." Chemical and Biological Technologies in Agriculture 4(1): 5.
Vaseva, I., et al. (2011). The response of plants to drought stress: The role of dehydrins, chaperones, proteases and protease inhibitors in maintaining cellular protein function: 1-46.
Wang, T., et al. (2009). "Total phenolic compounds, radical scavenging and metal chelation of extracts from Icelandic seaweeds." Food Chemistry 116(1): 240-248.
Wang, X., et al. (2016). "Drought-Responsive Mechanisms in Plant Leaves Revealed by Proteomics." International journal of molecular sciences 17(10): 1706.
Weber, H., et al. (2004). "Selective and powerful stress gene expression in Arabidopsis in response to malondialdehyde." Plant J 37(6): 877-888.
Weller, D. M. and L. S. Thomashow (2007). Current Challenges in Introducing Beneficial Microorganisms into the Rhizosphere.
Xu, Z. Z. and G. S. Zhou (2006). "Combined effects of water stress and high temperature on photosynthesis, nitrogen metabolism and lipid peroxidation of a perennial grass Leymus chinensis." Planta 224(5): 1080-1090.
Yadav, S. K. (2010). "Cold stress tolerance mechanisms in plants. A review." Agronomy for Sustainable Development 30(3): 515-527.
Yokoi, S., et al. (2002). "Differential expression and function of Arabidopsis thaliana NHX Na+/H+ antiporters in the salt stress response." Plant J 30(5): 529-539.
Zhu, J.-K. (2002). "Salt and drought stress signal transduction in plants." Annual review of plant biology 53: 247-273.
Zou, P., et al. (2019). "Polysaccharides Derived From the Brown Algae Lessonia nigrescens Enhance Salt Stress Tolerance to Wheat Seedlings by Enhancing the Antioxidant System and Modulating Intracellular Ion Concentration." Frontiers in Plant Science 10(48).
電子全文 電子全文(網際網路公開日期:20250823)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top