跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/13 21:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊復森
論文名稱:利用分子標幟輔助導入Saltol QTL提升秈稻品系ST28之耐鹽性
論文名稱(外文):The Introgression of Saltol QTL into Indica Rice Lines ST28 to Increase Salinity Tolerance by Using Marker-Assisted Selection
指導教授:郭介煒郭介煒引用關係
指導教授(外文):Kuo, Chei-Wei
學位類別:碩士
校院名稱:國立嘉義大學
系所名稱:農藝學系研究所
學門:農業科學學門
學類:一般農業學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:48
中文關鍵詞:分子標幟輔助選拔水稻耐鹽
外文關鍵詞:molecular marker-assisted selectionricesalt tolerance
相關次數:
  • 被引用被引用:0
  • 點閱點閱:116
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
本研究選用耐鹽秈稻品系ST28為材料,將耐鹽秈稻品種“Pokkali”第一條染色體上的耐鹽基因Saltol QTL與耐鹽稉稻品系CWY981126進行耐鹽性的雜交組合,其後再選出帶有Saltol QTL之BC1F2後代與IR64背景之秈稻品系ST28再進行回交,藉以探討水稻耐鹽特性的堆疊是否可提升秈稻品系ST28對鹽分逆境的耐受能力。
秈稻品種“Pokkali”與稉稻品系CWY981126的雜交後代透過分子標幟輔助進行前景篩選,而帶Saltol QTL雜交後代BC1F1再經過分子標幟輔助進行背景選拔,挑出較近稉稻之BC1F2後代者為母本,進一步以耐鹽秈稻品系ST28為父本,經三次回交後在BC3F2世代分選出34個耐鹽品系,各品系幼苗於3葉齡進行200mM NaCl處理,模擬在鹽分逆境下的生長環境,結果選出ST7、ST8、ST10、ST19、ST20、ST24、ST26、ST27、ST30及ST34等10個品系,其於復水後恢復生長之情形優於對照的秈稻品種“IR64”,顯示在選出之品系具有一定程度之耐鹽特性。
34個品系(BC3F3世代)在慣行栽培下,以輪迴親秈稻品系ST28為基準,挑選出了ST8、ST10、ST24、ST27及ST34等5個品系產量表現優於較輪迴親,然鹽分逆境下挑選則以ST8、ST10、ST20、ST24、ST26、ST27及ST30等7個品系產量表現較輪迴親優;由試驗結果顯示ST8、ST10及ST27等3個品系在正常與鹽分逆境環境下,其實際栽培價值均優於對照秈稻品系ST28,顯示在導入耐鹽性狀Saltol QTL後,可提升水稻品系之耐鹽特性表現,培育出產量優於輪迴親秈稻品系ST28的水稻品系。
In this study,the salt-tolerant indica rice line ST28 (IR64 background) was selected as the material. The salt-tolerant gene Saltol QTL on the first chromosome of the salt-tolerant indica rice variety Pokkali was combined with the salt-tolerant japonica rice line CWY981126 for salt tolerance. The offspring of BC1F2 of Saltol QTL was backcrossed with the indica rice line ST28 of IR64 background, to explore whether the stacking of salt tolerance characteristics of rice could enhance the tolerance of indica rice line ST28 to salt stress.
The hybrid offspring of the indica rice variety Pokkali and the stem rice line CWY981126 were screened by molecular flag assisted foreground, while the BC1F1 hybrid offspring with Saltol QTL was selected by molecular flag assisted background selection. Further, the salt-tolerant indica rice line ST28 was used as the male parent. After three backcrosses, 34 salt-tolerant lines were selected in the BC3F2 generation. The seedlings of each line were treated with 200mM sodium chloride at 3 leaf age to simulate the growth environment under salt stress. As a result, 10 strains including ST7, ST8, ST10, ST19, ST20, ST24, ST26, ST27, ST30 and ST34 were selected, and their recovery after rehydration was better than the control indica rice variety IR64, showing that the selected strains have certain Degree of salt tolerance.
34 lines (BC3F3) under continuous cultivation, based on the reintroduction indica rice line ST28, selected 5 lines such as ST8, ST10, ST24, ST27 and ST34. The selection of 7 strains such as ST8, ST10, ST20, ST24, ST26, ST27, and ST30 performed better than the reincarnation progeny; the test results showed that the three strains of ST8, ST10, and ST27 were under normal and salt stress environments. The cultivation value is superior to the control indica rice line ST28, which shows that the introduction of salt-tolerant traits Saltol QTL can improve the salt tolerance characteristics of rice lines, and cultivate rice lines with yields superior to reincarnation indica rice line ST28.
摘要 I
Abstract III
表目錄 VII
圖目錄 VIII
壹、前言 1
一、鹽分逆境下的水稻生理 1
二、水稻耐鹽性的研究 3
三、水稻的耐鹽育種 6
貳、材料與方法 14
一、材料來源 14
二、水稻耐鹽性之分子標幟輔助選育 15
三、水稻DNA萃取 16
四、聚丙烯醯胺膠體製作與電泳分析 17
五、水稻耐鹽性狀之評估 19
六、BC3F3世代各品系間產量差異觀察 21
參、結果 22
一、利用分子標幟進行F1及BC1F1、BC2F1前景選拔 22
二、BC3F2世代不同品系的耐鹽性評估 23
三、回交品系在慣行栽培下的產量評估 24
四、BC3F3世代在鹽份逆境下的產量評估 25
五、BC3F3世代的耐鹽性及產量的混合評估 26
肆、討論 27
一、分子標幟輔助目標性狀之導入 27
二、BC3F2世代各品系的耐鹽性評估 28
三、BC3F3後代慣行栽培及鹽份逆境的產量評估 29
伍、參考文獻 31
Akbar, M., G. S. Khush, and D. Hillerislambers. 2008. Genetics of salt tolerance in rice. p.399–409. in: Proceedings of the International Rice Genetics Symposium. May 27–31, 1985. Manila, Philippines. International Rice Research Institute, Laguna, Philippines.
Alam, R., M. S. Rahman, Z. I. Seraj, M. J. Thomson, A. M. Ismail, E. Tumimbang-Raiz and G. Gregorio. 2011. Investigation of seedling-stage salinity tolerance QTLs using backcross lines derived from Oryza sativa L. Pokkali. Plant Breed. 130:430–437.
Bonilla, P., J. Dvorak, D. Mackill, K. Deal and G. Gregorio. 2002. RLFP and SSLP mapping of salinity tolerance genes in chromosome 1 of rice (Oryza sativa L.) using recombinant inbred lines. Philipp Agric Sci. 85:68–76.
Babu, N. N., S.G. Krishnan, K. K. Vinod, S. L. Krishnamurthy, V. K. Singh, M. P. Singh, R. Singh, R. K. Ellur, V. Rai, H. Bollinedi, P. K. Bhowmick, A. K. Yadav, M. Nagarajan, N. K. Singh, K. V. Prabhu and A. K. Singh, 2017. Marker Aided Incorporation of Saltol, a Major QTL Associated with Seedling Stage Salt Tolerance, into Oryza sativa 'Pusa Basmati 1121'. Frontiers in plant science, 8, 41.
Collard, B., Z. Jahufer, J.B. Brouwer and E. Pang. 2005. An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: The basic concepts. Euphytica. 142. 169-196.
Collard, B. C. Y. and D. J. Mackill. 2008. Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Phil. Trans. R. Soc. B 363:557-572.
Chen, R. K., Y. R. Lin and J. C. Lo. 2012. A newly developed rice variety“Tainan No. 16”. Tainan District Agricultural Research & Development Station. Contribution No.396
De Leon, T. B., S. Linscombe, P. K. Subudhi. 2017. Identification and validation of QTLs for seedling salinity tolerance in introgression lines of a salt tolerant rice landrace 'Pokkali'. PloS one, 12(4), e0175361.
Gregorio, G. B. and D. Senadhira. 1993. Genetic analysis of salinity tolerance in rice (Oryza sativa L.). Theor. Appl. Genet. 86:333-338.
Gregorio, G. B., D. Senadhira and R. D. Mendoza. 1997. Screening rice for salinity tolerance. IRRI Discussion Paper Series No. 22. International Rice Research Institute, Manila, Philippines.
Ganie, S. A., M. J. Borgohain, K. Kritika, A. Talukdar, D. R. Pani and T. K. Mondal. 2016. Assessment of genetic diversity of Saltol QTL among the rice (Oryza sativa L.) genotypes. Physiology and molecular biology of plants : an international journal of functional plant biology, 22(1), 107-14.
Hauser, F. and T. Horie. 2010. A conserved primary salt tolerance mechanism mediated by HKT transporters: a mechanism for sodium exclusion and maintenance of high K+/Na+ ratio in leaves during salinity stress. Plant Cell Environ. 33:552–565.
Horie, T., I. Karahara, and M. Katsuhara. 2012 Salinity tolerance mechanisms in glycophytes: An overview with the central focus on rice plants. Rice. 5:11
Huyen, L. T. N., L. M. Cuc, A. M. Ismail, and L. H. Ham. 2012. Introgression the salinity tolerance QTLs Saltol into AS996, the elite rice variety of Vietnam. Amer. J. Plant Sci. 3:981–987.
Jwo, W. S., C. G. Chern, M. H. Lai, H. M. Yen, T. H. Tseng and H. E. Yen. 2008. Screening technique for salt tolerance in the rice seeding stage. J. Taiwan Agric. Res. 57:193-204.
Kuo, S. C., C. W. Kuo, Y. R. Lin, and Y. P. Wu. 2013. Marker-assisted selection of salt tolerance in rice (Oryza sativa L.). J. Taiwan Agric. Res. 62(2):137–156.
Kuo, S. C., 2012. The Inheritance and Marker-Assisted Selection of Salt Tolerance in Rice (Oryza sativa L.). Master Thesis, Department of Agronomy, National Chiayi University. Chiayi, Taiwan. 72 pp.
Jing, W., P. Deng, C. Cao, and W. Zhang. 2017. Fine mapping of qSKC-1, a major quantitative trait locus for shoot K+ concentration, in rice seedlings grown under salt stress. Breeding science, 67(3), 286–295.
Kuo, C. W., N. H. Wen, S. C. Kuo, Y. R. Lin, and Y. P. Wu. 2015. The introgressionof Saltol QTLs into salt tolerant line CWY981126 to increase its salinity tolerance by using marker-assisted selection. Crop, Environment & Bioinformatics 12:198-217
Krishnamurthy, S. L., P. Pundir, A. S. Warraich, S. Rathor, B. M. Lokeshkumar, N. K. Singh and P. C. Sharma. 2020. Introgressed saltol QTL lines improves the salinity tolerance in rice at seedling stage. Frontiers in plant science. 11:833. 13 pp.
Lafitte, H.R., A. Ismail, J. Bennett. 2004. Abiotic stress tolerance in rice for Asia: progress and the future. In: T. Fischer, N. Turner, J. Angus, L. McIntyre, M. Robertson, A. Borrell editors. New directions for a diverse planet: Proceedings of the 4th International Crop Science Congress. Brisbane, Australia.
Lisa, L. A., Z. I. Seraj, C. M. F. Elahi, K. C. Das, K. Biswas, M. R. Islam, M. A. Salam, A. R. Gomosta. 2004. Genetic variation in microsatellite DNA, physiology and morphology of coastal saline rice (Oryza sativa L.) landraces of Bangladesh. Plant Soil. 263:213–228.
Lin, H. X., M. Z. Zhu, M. Yano, J. P. Gao, Z. W. Liang, W. A. Su, X. H. Hu, Z. H. Ren and D. Y. Chao. 2004. QTLs for Na+ and K+ uptake of the shoots and roots controlling rice salt tolerance. Theor Appl Genet. 108: 253-260.
Linh, l., T. H. Linh, T. D. Xuan, l. Ham, A. M. Ismail, and T. D. Khanh. 2012. Molecular Breeding to Improve Salt Tolerance of Rice (Oryza sativa L.) in the Red River Delta of Vietnam. International journal of plant genomics. 2012:949038. https://doi.org/10.1155/2012/949038
Lien I. C., C. W. Kuo, S. C. Kuo, Y. R. Lin, and Y. P. Wu. 2016. Increasing drought tolerance in a salt-tolerant Japonica rice cultivar using maker-assisted selection. J. Taiwan Agric. Res. 65(2):154-172.
Liao, D. J., C. W. Kuo, S. C. Kuo, I. C. Lien, Y. R. Lin, and Y. P. Wu. 2018. The pyramiding of drought and salt tolerance of new rice lines using marker-assisted selection. J. Taiwan Agric. Res. 67(1):28–43.
Moeljopawiro, S. and H. Ikehashi. 1981. Inheritance of salt tolerance in rice. Euphytica 30:291–300.
Mishra, B., M. Akbar, and D. V. Seshu. 1990. Genetic studies on salinity tolerance in rice towards better productivity in salt-affected soils. p. 1-25. in: Pro-ceedings of the Papers Presented at the Rice Re-search Seminar. July 12, 1990. Makati, Philippines. International Rice Research Institute, Los Baños, Philippines.
Muthu, V., R. Abbai, J. Nallathambi, H. Rahman, S. Ramasamy, R. Kambale, T. Thulasinathan, B. Ayyenar and R. Muthurajan. 2020. Pyramiding QTLs controlling tolerance against drought, salinity, and submergence in rice through marker assisted breeding. PloS one, 15(1), e0227421. https://doi.org/10.1371/journal.pone.0227421
Platten, J. D., O. Cotsaftis, P. Berthomieu, H. Bohnert, R. J. Davenport, D. J. Fairbairn. 2006. Nomenclature for HKT transporters, key determinants of plant salinity tolerance. Trends Plant Sci. 11:372–374.
Pandit, A., V. Rai, S. Bal, S. Sinha, V. Kumar, M. S. Chauhan, R. K. Gautam, R. B. Singh, P. C. Sharma and A. K. Singh. 2010. Combining QTL mapping and transcriptome profiling of bulked RILs for identification of functional polymorphism for salt tolerance genes in rice (Oryza sativa L.). Mol Genet Genom. 28:121–136.
Puram, V. R. R., J. Ontoy, S. Linscombe, P. K Subudhi. 2017. Genetic Dissection of Seedling Stage Salinity Tolerance in Rice Using Introgression Lines of a Salt Tolerant Landrace "Nona Bokra", Journal of Heredity. 108(6):658-670
Ren, Z.H., J. P. Gao, L. G. Li, X. L. Cai, W. Huang, D. Y. Chao. 2005. A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nature Genet. 37:1141–1146.
Singh,V.K., B. D. Singh, A. Kumar, S. Maurya, S. G. Krishnan, K. K. Vinod, M. P. Singh, R. K. Ellur, P. K. Bhowmick and A. K. Singh. 2018. Marker-Assisted Introgression of Saltol QTL Enhances Seedling Stage Salt Tolerance in the Rice Variety "Pusa Basmati 1". International journal of genomics. Article ID 8319879, 12 pp.
Thomson, M. J., M. de Ocampo, J. Egdane, M. A. Rahman, A. G. Sajise, D. L. Adorada, E. Tumimbang-Raiz, E. Blumwald, Z. I. Seraj, R. K. Singh, G. B. Gregorio and AM. Ismail. 2010. Characterizing the saltol quantitative trait locus for salinity tolerance in rice. Rice 3:148-160. doi:10.1007/s12284-010-9053-8.
Vu, H. T. T., D. D. Le, A. M. Ismail, and H. H. Le. 2012. Marker assisted backcrossing (MABC) for improved salinity tolerance in rice (Oryza sativa L.) to cope with climate change in Vietnam. Aus. J. Crop Sci. 6:1649–1654.
Wu, Y. P. and H. S. Lur. 2002. Rice mutation breeding. Chinese Agron. J. 12:219-239.
Wang, Z., Z. Chen, J. Cheng, Y. Lai, J. Wang, Y. Bao, J. Huang and H. Zhang. 2012. QTL analysis of Na+ and K+ concentrations in roots and shoots under different levels of NaCl stress in rice (Oryza sativa L.). PloS one, 7(12), e51202.
Wen, N. H., 2016. To enhance salt tolerance of Japonica Rice CWY981126 and TK9 by introgression of Saltol QTL using marker-assisted selection. Master Thesis, Department of Agronomy, National Chiayi University. Chiayi, Taiwan. 85 pp.
Wen, N. H., C. W. Kuo, S. C. Kuo, Y. R. Lin, and Y. P. Wu. 2016. The introgression of Saltol QTL into ‘TK9’to increase salinity tolerance by using marker-assisteds election. J. Taiwan Agric. Res.65(3):328-347.
Yeo, A. R., T. J. Flowers. 1986. The physiology of salinity tolerance in rice (Oryza sativa) and a pyramiding approach to breeding varieties for saline soils. Aust J Plant Physiol.13:75–91.
Yen, C. C. and J. H. Lin. 2011. Screening, inheritance and linkage marker analyses of salt tolerance in mutated scented japonica rice (Oryza sativa L.). Plant Prod. Sci. 14:260–269.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊