跳到主要內容

臺灣博碩士論文加值系統

(44.192.95.161) 您好!臺灣時間:2024/10/16 02:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李佳蓉
論文名稱:分析蝴蝶蘭抽梗過程中葉片上脂質相關的分子
論文名稱(外文):Analysis of lipids analogs of leaves in the stalk process of Phalaenopsis
指導教授:鄭建中鄭建中引用關係
學位類別:碩士
校院名稱:國立嘉義大學
系所名稱:應用化學系研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2019
畢業學年度:108
語文別:中文
論文頁數:93
中文關鍵詞:蝴蝶蘭脂質抽梗油酸
外文關鍵詞:Phalaenopsisstalklipidoleic acid
相關次數:
  • 被引用被引用:0
  • 點閱點閱:99
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要 i
Abstract ii
誌謝 iii
圖表目錄 vii
附錄圖表 ix
第一章 緒論 1
1-1 蝴蝶蘭介紹 1
1-1-1 台灣的蝴蝶蘭 1
1-1-2 生長特性 1
1-1-3 植物分類、外觀及用途 3
1-2 文獻探討以及研究動機與目的 6
1-3 脂質介紹 7
1-3-1 脂質組學簡介 7
1-3-2 脂質種類及其結構 7
1-3-3 植物脂質 11
1-3-4 植物脂質訊號 11
1-3-5 脂質分析方法 14
第二章 材料與方法 17
2-1 實驗材料 17
2-1-1 植物材料及藥品 17
2-1-2 儀器設備 19
2-1-3 實驗基本條件 20
2-2 蝴蝶蘭葉萃取 21
2-2-1 取樣部位 21
2-2-2 萃取步驟 22
2-3以 HPLC 分離蝴蝶蘭葉粗萃取物 23
2-3-1 樣品前處理 23
2-3-2 分離條件 23
2-3-3 純化蝴蝶蘭葉之脂質 23
2-4 以內標法定量抽梗前後蝴蝶蘭葉粗萃取物之脂質 26
2-4-1 加標溶液配製 26
2-4-2 加標樣品配製 27
2-4-3 定量抽梗前後蝴蝶蘭葉粗萃取物 27
第三章 結果與討論 28
3-1 蝴蝶蘭葉萃取 28
3-1-1 萃取溶劑之選擇 28
3-1-2 蝴蝶蘭葉粗萃取物之核磁共振光譜 28
3-2 以 HPLC 分離抽梗前後蝴蝶蘭葉粗萃取物 29
3-3 單離抽梗後蝴蝶蘭葉萃取物脂質之結構鑑定 37
第四章 結論 45
第五章 參考文獻 46
附錄圖表 52
1. 林讚標 (1975)。 台灣蘭科植物。 台北:南天書局。
2. 廖敏卿 (1990)。 蝴蝶蘭栽培。 台北:廖敏卿。
3. 李哖、林菁敏 (1984)。 溫度對白花蝴蝶蘭生長與開花之影響。 中國園藝, 30 (4),
223-231。
4. 李嘉慧、李哖 (1991)。 台灣蝴蝶蘭根和葉的形態與解剖的特性。 中國園藝, 37 (4),
237-248。
5. End, M.; Ikusima, I., Diurnal rhythm and characteristics of photosynthesis and respiration in
the leaf and root of a Phalaenopsis plant. Plant cell Physio. 1989, 30 (1), 43-47.
6. 張則周 (2008)。 植物營養學。台北:五南。
7. 邱閔娟 (2011)。 蝴蝶蘭生長代謝之碳氮比分析及抗氧化測試。 國立嘉義大學應用化學
系碩士論文。
8. Tzou, D. L. M.; Ni, L. K.; Chen, M. M.; Chiou, M. C.; Chen, L. C.; Hsu, S. T.; Ku, K. L.;
Cheng, C. C., Fingerprints of Phalaenopsis Tissues in Growth and Spike Induction Periods—A
Solid‐state 13C NMR Approach. J. Chin. Chem. Soc. 2013, 60 (9), 1107-1112.
9. 陳振中 (2006)。 固態核磁共振光譜學簡介。科儀新知, 155, 42-49。
10. Svensson, M.; Mossberg, A.-K.; Pettersson, J.; Linse, S.; Svanborg, C., Lipids as cofactors in protein folding: stereo-specific lipid-protein interactions are required to form HAMLET (human alpha-lactalbumin made lethal to tumor cells). Protein Sci. 2003, 12 (12), 2805-2814.
11. Ramasarma, T., Lipid Quinones. Advances in Lipid Research 1968, 6, 107-180.
12. Lodish, H., Berk, A., Zipursky, S. L., Matsudaira, P., Baltimore, D., & Darnell, J. (2000). Molecular cell biology (4th ed.). National Center for Biotechnology Information, Bookshelf.
13. Baumruker, T.; Bornancin, F.; Billich, A., The role of sphingosine and ceramide kinases in inflammatory responses. Immunol. Lett. 2005, 96 (2), 175-185.
14. Di Paolo, G.; De Camilli, P., Phosphoinositides in cell regulation and membrane dynamics. Nature 2006, 443 (7112), 651.
15. Zu Heringdorf, D. M.; Jakobs, K. H. J. B. e. B. A.-B., Lysophospholipid receptors: signalling, pharmacology and regulation by lysophospholipid metabolism. Biochim. Biophys. Acta 2007, 1768 (4), 923-940.
16. Cuvillier, O., Sphingosine in apoptosis signaling. Biochim. Biophys. Acta. 2002, 1585 (2), 153-162.
17. Obeid, L. M.; Linardic, C. M.; Karolak, L. A.; Hannun, Y. A., Programmed cell death induced by ceramide. Science 1993, 259 (5102), 1769.
18. Venable, M. E.; Lee, J. Y.; Smyth, M. J.; Bielawska, A.; Obeid, L. M., Role of ceramide in cellular senescence. J. Biol. Chem. 1995, 270 (51), 30701-30708.
19. Schwarz, A.; Futerman, A. H., Distinct Roles for Ceramide and Glucosylceramide at Different Stages of Neuronal Growth. J. Neurosci. 1997, 17 (9), 2929.
20. Brinkmann, V., Sphingosine 1-phosphate receptors in health and disease: Mechanistic insights from gene deletion studies and reverse pharmacology. Pharmaco. Ther. 2007, 115 (1), 84-105.
21. Fahy, E.; Subramaniam, S.; Brown, H. A.; Glass, C. K.; Merrill Jr, A. H.; Murphy, R. C.; Raetz, C. R.; Russell, D. W.; Seyama, Y.; Shaw, W., A comprehensive classification system for lipids. Eur. J. Lipid Sci.Technol. 2005, 107 (5), 337-364.
22. Alberf L. Lehninger, D. L. N., and Michael M. Cox (1993), Principles of biochemistry (2nd ed.). New York:Worth Publishers.
23. Dharmawardhane, S.; Rubinstein, B.; Stern, A. I., Regulation of Transplasmalemma Electron Transport in Oat Mesophyll Cells by Sphingoid Bases and Blue Light. Plant Physiol. 1989, 89 (4), 1345.
24. Ng, C. K.-Y.; Hetherington, A. M., Sphingolipid-mediated Signalling in Plants. Annals of Botany 2001, 88 (6), 957-965.
25. Brodersen, P.; Petersen, M.; Pike, H. M.; Olszak, B.; Skov, S.; Ødum, N.; Jørgensen, L. B.; Brown, R. E.; Mundy, J., Knockout of Arabidopsis accelerated-cell-death11 encoding a sphingosine transfer protein causes activation of programmed cell death and defense. Genes Dev. 2002, 16 (4), 490-502.
26. Harwood, J. L., Recent advances in the biosynthesis of plant fatty acids. Biochim. Biophys. Acta 1996, 1301 (1), 7-56.
27. Corvera, S.; D'Arrigo, A.; Stenmark, H., Phosphoinositides in membrane traffic. Current Opinion in Cell Biology 1999, 11 (4), 460-465.
28. Stevenson, J. M.; Perera, I. Y.; Heilmann, I. Persson, S.; Boss, W. F., Inositol signaling and plant growth. Trends Plant Sci. 2000, 5 (6), 252-258.
29. Zhong, R.; Burk, D. H.; Morrison, W. H.; Ye, Z.-H., FRAGILE FIBER3, an Arabidopsis Gene Encoding a Type II Inositol Polyphosphate 5-Phosphatase, Is Required for Secondary Wall Synthesis and Actin Organization in Fiber Cells. Plant Cell 2004, 16 (12), 3242.
30. Zhong, R.; Burk, D. H.; Nairn, C. J.; Wood-Jones, A.; Morrison, W. H.; Ye, Z.-H., Mutation of SAC1, an Arabidopsis SAC Domain Phosphoinositide Phosphatase, Causes Alterations in Cell Morphogenesis, Cell Wall Synthesis, and Actin Organization. Plant Cell 2005, 17 (5), 1449.
31. Preuss, M. L.; Schmitz, A. J.; Thole, J. M.; Bonner, H. K. S.; Otegui, M. S.; Nielsen, E., A role for the RabA4b effector protein PI-4Kβ1 in polarized expansion of root hair cells in Arabidopsis thaliana. J. Cell Biol. 2006, 172 (7), 991.
32. Kusano, H.; Testerink, C.; Vermeer, J. E. M.; Tsuge, T.; Shimada, H.; Oka, A.; Munnik, T.; Aoyama, T., The the Arabidopsis Phosphatidylinositol Phosphate 5-Kinase PIP5K3 Is a Key Regulator of Root Hair Tip Growth. Plant Cell 2008, 20 (2), 367.
33. Falkenburger, B. H.; Jensen, J. B.; Dickson, E. J.; Suh, B.-C.; Hille, B., Phosphoinositides: lipid regulators of membrane proteins. J. Physiol. 2010, 588 (Pt 17), 3179-3185.
34. Munnik, T.(2009), Lipid signaling in plants. Heidelberg, Germany: Springer Science & Business Media.
35. Scherer, G. F. E.; André, B., Stimulation of phospholipase A2 by auxin in microsomes from suspension-cultured soybean cells is receptor-mediated and influenced by nucleotides. Planta 1993, 191 (4), 515-523.
36. Roy, S.; Pouénat, M.-L.; Caumont, C.; Cariven, C.; Prévost, M.-C.; Esquerré-Tugayé, M.-T., Phospholipase activity and phospholipid patterns in tobacco cells treated with fungal elicitor. Plant Sci. 1995, 107 (1), 17-25.
37. Hunt, L.; Mills, L. N.; Pical, C.; Leckie, C. P.; Aitken, F. L.; Kopka, J.; Mueller-Roeber, B.; McAinsh, M. R.; Hetherington, A. M.; Gray, J. E., Phospholipase C is required for the control of stomatal aperture by ABA. Plant J. 2003, 34 (1), 47-55.
38. Mills, L. N.; Hunt, L.; Leckie, C. P.; Aitken, F. L.; Wentworth, M.; McAinsh, M. R.; Gray, J. E.; Hetherington, A. M., The effects of manipulating phospholipase C on guard cell ABA‐signalling. J. Exp. Bot. 2004, 55 (395), 199-204.
39. De Jong, C. F.; Laxalt, A. M.; Bargmann, B. O.; De Wit, P. J.; Joosten, M. H.; Munnik, T., Phosphatidic acid accumulation is an early response in the Cf‐4/Avr4 interaction. Plant J. 2004, 39 (1), 1-12.
40. Charron, D.; Pingret, J.-L.; Chabaud, M.; Journet, E.-P.; Barker, D. G., Pharmacological evidence that multiple phospholipid signaling pathways link Rhizobium nodulation factor perception in Medicago truncatula root hairs to intracellular responses, including Ca2+ spiking and specific ENOD gene expression. Plant Physiol. 2004, 136 (3), 3582.
41. Coursol, S.; Pierre, J. N.; Vidal, J., Role of the phosphoinositide pathway in the light-dependent C4 phosphoeno/pyruvate carboxylase phosphorylation cascade in Digitaria sanguinalis protoplasts. Biochem. Soc. Trans. 2000, 28 (6), 821-823.
42. Zhang, W.; Yu, L.; Zhang, Y.; Wang, X., Phospholipase D in the signaling networks of plant response to abscisic acid and reactive oxygen species. Biochim. Biophys. Acta 2005, 1736 (1), 1-9.
43. Li, W.; Li, M.; Zhang, W.; Welti, R.; Wang, X., The plasma membrane–bound phospholipase Dδ enhances freezing tolerance in Arabidopsis thaliana. Nat. biotechnol. 2004, 22 (4), 427.
44. Young, S. A.; Wang, X.; Leach, J. E., Changes in the Plasma Membrane Distribution of Rice Phospholipase D during Resistant Interactions with Xanthomonas oryzae pv oryzae. Plant Cell 1996, 8 (6), 1079.
45. Matyash, V.; Liebisch, G.; Kurzchalia, T. V.; Shevchenko, A.; Schwudke, D., Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. J. Llipid Res. 2008, 49 (5), 1137-1146.
46. Guan, X. L.; Wenk, M. R., Mass spectrometry‐based profiling of phospholipids and sphingolipids in extracts from Saccharomyces cerevisiae. Yeast 2006, 23 (6), 465-477.
47. Sugiyama, E.; Hara, A.; Uemura, K.-i., A quantitative analysis of serum sulfatide by matrix-assisted laser desorption ionization time-of-flight mass spectrometry with delayed ion extraction. Anal. Biochem. 1999, 274 (1), 90-97.
48. 汪勇、王兴国、胡学烟(2002), 磷脂含量及组成的分析检测方法。 中国油脂, 27 (4),
64-67.
49. Belitz, H. D., Grosch, W., & Schieberle, P. (2009), Food Chemistry. Germany: Springer,
Berlin, Heidelberg.
50. Alexandri, E.; Ahmed, R.; Siddiqui, H.; Choudhary, M. I.; Tsiafoulis, C. G.; Gerothanassis, I.
P., High resolution NMR spectroscopy as a structural and analytical tool for unsaturated lipids
in solution. Molecules 2017, 22 (10), 1663.
51. Snyder, L.; Kirkland, J.; Dolan, J. J. I. t. M. L. C., Appendix I: Properties of HPLC Solvents.
2010, 879-886.
52. Carrillo, C.; Alonso-Torre, S., Antitumor effect of oleic acid; mechanisms of action. A review.
Nutr. Hosp. 2012, 27 (6), 1860-1865.
53. Kachroo, A.; Venugopal, S. C.; Lapchyk, L.; Falcone, D.; Hildebrand, D.; Kachroo, P., Oleic
acid levels regulated by glycerolipid metabolism modulate defense gene expression in
Arabidopsis. Proc. Natl Acad. Sci. U. S. A. 2004, 101 (14), 5152.
54. Wang, C.; Wang, X., A Novel Phospholipase D of Arabidopsis That Is Activated by Oleic Acid
and Associated with the Plasma Membrane. Plant Physiol. 2001, 127 (3), 1102
電子全文 電子全文(網際網路公開日期:20250112)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top