跳到主要內容

臺灣博碩士論文加值系統

(44.221.73.157) 您好!臺灣時間:2024/06/20 09:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張軒誠
研究生(外文):Syuan-Cheng Chang
論文名稱:二維干涉式雷射編碼器之設計與應用
論文名稱(外文):Design and Application of the Two-Dimensional Interferometric Laser Encoder System
指導教授:張中平
指導教授(外文):Chang, Chung-Ping
學位類別:碩士
校院名稱:國立嘉義大學
系所名稱:機械與能源工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:59
中文關鍵詞:直線度誤差垂直度誤差線性定位線性編碼器干涉式雷射編碼器五角分光鏡精密定位平台機台驗證
外文關鍵詞:straightness errorsquareness errorlinear positioninglinear encoderLaser interferometric encoderPentaprism beam splitterPrecision stageverification
相關次數:
  • 被引用被引用:2
  • 點閱點閱:166
  • 評分評分:
  • 下載下載:31
  • 收藏至我的研究室書目清單書目收藏:0
現今精密機械與半導體產業多半使用光學尺與伺服編碼器作為系統的回授系統,這兩項回授系統都難以補償X-Y定位平台在組裝時所產生的幾何誤差。平台在架設光學尺時無法將兩軸光學尺組裝的相當垂直,若採用伺服編碼器則會產生背隙誤差的問題,這些誤差都會影響到平台的定位精度。對於精度要求嚴格的產業就必須選用更精密的編碼器系統。

本論文提出新型共光程雷射編碼器系統應用於高精密X-Y定位平台,透過光機架構的設計可減免二維定位平台之垂直度、直線度與阿貝誤差等幾何誤差。本架構中雷射光垂直分光機制採用五角分光鏡,並以此光束作為雷射編碼器的量測光軸,此設計可在五角分光鏡內產生一量測零點,透過此零點的特性可大幅減低上述的幾何誤差。

在50 mm線性定位實驗中,於一般環境下移動平台,系統解析度為15.8 nm,定位誤差可控制於20 nm以內,整定誤差(標準差)可約在40 nm內,證實系統有長距離定位的能力。而在X-Y平面定位實驗中,在3 mm x 3 mm 的定位實驗範圍內,於一般環境下移動定位誤差可控制在20 nm內,整定誤差(標準差)可小於50 nm,證實系統可精確進行二維度同動的定位工作。由此實驗結果可知,本文所開發出利用二維雷射編碼器的高精密定位系統,可符合精密機械產業或是半導體產業的應用需求。

在校正系統實驗中干涉訊號解析度約為80 nm,X軸與Y軸的定位誤差分別控制在0.7μm和0.9μm。在真直誤差檢測中X軸誤差為0.8413μm,Y軸誤差為0.0084μm。測試平台的X軸與Y軸夾角約89.951度,垂直誤差約0.049度。根據實驗結果顯示,本文之校正系統可用於精密半導體產業。
Linear scale or servo encoder was used mostly in the closed-loop systems for precision machinery and semiconductor industries. Both of those feedback systems are difficult for the compensation of the geometric errors in the X-Y positioning stage. Therefore the novel Laser encoder system for X-Y positioning stage was proposed.

In this study, the design of the common-path Laser encoder system for X-Y positioning stage was investigated. The eliminated geometrical errors including squareness error, straightness error, and Abbe error, can be minimized by this Laser encoder system. Those errors are induced by mechanical components and assemblies. In this optical structure, a pentaprism beam splitter was employed to divide the laser beam into two encoder axes which are perpendicular to each other. For this features of the pentaprism and arrangement, a measuring zero point of the positioning stage was formed inside the pentaprism beam splitter. Therefore, those specific geometrical errors can be minimized by the proposed system. In this investigation, the design of the opto-mechatronics structure and its theoretical simulations will be studied.

According to the optical principle, the resolution of the proposed encoder system is about 15.8 nm. The linear positioning experimental results were determined in the ordinary environment revealed that the positioning error and the maximum standard deviation are about 20 nm and 40 nm, respectively. In the X-Y positioning experiment, the positioning error is about 20 nm and the maximum standard deviation is about 50 nm. The Laser encoder system presented in this study is recommended for the utilization in the precision machinery and semiconductor industries for precision positioning purposes.

From the results of the calibration experiments, the positioning errors in the X and Y axes of the testing stage are 0.7 μm and 0.9 μm respectively with a resolution of 80 nm. The straightness error in the X and Y axes of the testing stage are 0.8413 μm and 0.0084 μm. The squareness error of 0.049 degrees has also been measured in this test. According to the experimental results, the proposed calibration system can meet the requirements of the precision semiconductor industry.
摘 要 i
Abstract iii
誌 謝 v
目 次 vi
圖目錄 viii
表目錄 xi
符號目錄 xii
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 2
1.3 文獻回顧 2
1.4 論文架構 5
第二章 研究方法 6
2.1 二維定位平台介紹 6
2.1.1 應用領域 6
2.1.2 誤差分析 7
2.1.3 現有定位回授技術 11
2.1.4 機台誤差檢測技術 18
2.2 研究架構設計與原理 19
2.2.1 幾何誤差減免光機設計 20
2.2.2 雷射編碼器的架構規劃 23
第三章 實驗規劃 31
3.1 實驗系統 31
3.1.1 二維定位平台 31
3.1.2光學電路設計 32
3.2 定位系統 33
3.2.1 定位系統流程圖 33
3.2.2 細分割模組 34
3.2.3 回授控制系統 35
3.3 檢測系統 36
3.3.1檢測系統流程圖 36
3.3.2 干涉訊號處理 37
第四章 實驗結果與分析 38
4.1 定位系統實驗 38
4.2 校正系統實驗 45
4.3 光軸垂直度分析 50
第五章 結論與探討 51
參考文獻 52
附 錄 一 細分割模組規格 57
附 錄 二 擷取卡規格 58
附 錄 三 五角分光鏡規格 59
【1】 Ming-Hsien Wu, Yen-Hsiang Fang, “Picking-up and placing process for electronic devices and electronic module”, US patent, US 20160268491 A1, Industrial Technology Research Institute, Sep. 15, 2016.
【2】 Takeshi Mizuno, Katsuhiro Tomoda, Toyoharu Oohata, “Method of transferring device”, US patent, US 20100258543 A1, Sony Corporation, Oct. 14, 2010.
【3】 Dariusz Golda, John A. Higginson, Andreas Bibl, Paul Argus Parks, Stephen Paul Bathurst, “Mass transfer tool manipulator assembly”, US patent, US 9308649 B2, LuxVue Techonology Corporation, US 9308649 B2, June 12, 2016.
【4】 Yu-Chu Li, Yu-Hung Lai, Tzu-Yang Lin, “Method for transferring light-emitting elements onto a package substrate”, US patent, US 9583450 B2, PlayNitride Inc.,Feb. 28, 2017.
【5】 BIPM, “17th General Conference on Weights and Measures (1983), Resolution 1”, Retrieved 19 September 2012.
【6】 Norman Bobroff, “Recent advances in displacement measuring interferometry”, Measurement Science and Technology, Vol. 4, No. 9, Pages 907-926, May 1993.
【7】 M.A. Donmez, D.S. Blomquist, R.J. Hocken, C.R. Liu, M.M. Barash, “A general methodology for machine tool accuracy enhancement by error compensation”, Precision Engineering, Vol. 8, Issue 4, Pages 187-196, October 1986.
【8】 J. S. Chen, T. W. Kou, S. H. Chiou, “Geometric error calibration of multi-axis machines using an auto-alignment laser interferometer”, Precision Engineering, Vol. 23, Issue 4, Pages 243–252, October 1999.
【9】 Jie Qin, Zhan Gao, Xu Wang and Shanwei Yang, ” Three-dimensional continuous displacement measurement with temporal speckle pattern interferometry”, Sensors, Vol. 16, No. 12, November 2016.
【10】 G. Jaeger, "Three-dimensional nanopositioning and nanomeasuring machine with a resolution of 0.1 nm", Optoelectronics, Instrumentation and Data Processing, Vol. 46, No. 4, pp. 318-323, 2010.
【11】 G. Jaeger, "Limitations of precision length measurements based on interferometers", J. Measurement, Vol. 43, Issue 5, June 2010, pp. 652-658 2010.
【12】 Q. H., K. Wu, C. Wang, R. Li, K. C. Fan and Y. Fei,” Development of an Abbe error free micro coordinate measuring machine”, Applied Sciences, Vol. 6, Issue 4, p.p. 97, 2016.
【13】 Fang Xie, Min Li, Ding Song, Jinling Sun, and Tao Zhang, “Large range and high resolution on-line displacement measurement system by combining double interferometers”, Optics Express, Vol. 18, No. 24, Nov.22, 2010.
【14】 Fang Cheng, Kuang-Chao Fan, “High-resolution Angle Measurement based on Michelson Interferometry”, Physics Procedia, Vol. 19, 2011, Pages 3-8, 2011.
【15】 Mauro Melozzi, Luca Pezzati, and Alessandro Mazzoni, "Vibration-insensitive interferometer for on-line measurements", Applied Optics, Vol. 34, No. 25, Sep. 1, 1995.
【16】 JCGM 100: 2008, “Evaluation of Measurement data – Guide to the Expression of Uncertainty in Measurement”, First edition, 2008.
【17】 T. H. Maiman, “Stimulated Optical Radiation in Ruby”, Nature, Vol. 187, Issue 4736, pp. 493-494, 1960.
【18】 S. M. Angood, C. Kemp, R. J. Chaney, M. A. V. Chapman, D. R. Mcmurtry, “Rotation detection kit”, US patent, US 20100097606 A1, Renishaw PLC, Apr. 22, 2010.
【19】 D. McMurtry, R. Chaney, M. Chapman, S. Angood, “Laser calibration apparatus”, US patent, US 20060215179 A1, Renishaw PLC, Sep. 28, 2006.
【20】 K. A. R. B. Pietraszewski, “Recent Developments in Fabry-Perot Interferometer”, ASP Conference Series, Vol. 195, pp. 591-596, 2000.
【21】 Y. C. Wang, L. H. Shyu, C. P. Chang, ” The Comparison of Environmental Effects on Michelson and Fabry-Perot Interferometers Utilized for the Displacement Measurement”, Sensors, Vol. 10, pp. 2577-2586, 2010.
【22】 J. R. Lawall, “ Fabry-Perot metrology for displacements up to 50 mm”, Optical Society of America, Vol.22, No. 12, pp.2786-2798, 2005.
【23】 G. Jaeger, E. Manske, T. Hausotte, H. J. Buechner, R. Gruenwald, “Nanopositioning and measuring technique”, Proc. SPIE 4900, Seventh International Symposium on Laser Metrology Applied to Science, Industry, and Everyday Life, 29 July, 2002.
【24】 G. X. Zhang, “A Study on the Abbe Principle and Abbe Error”, CIRP Annals, Vol. 38, Issue 1, p.p. 525-528, 1989.
【25】 科技台灣(無作者,以網頁名稱做作者)(民108年09月01日)。黃光微影(Photolithography),民109年06月22日取自:
https://www.ansforce.com/post/S1-p427
【26】 International Organization for Standardization, "Test code for machine tools -- Part 1: Geometric accuracy of machines operating under no-load or quasi-static conditions", ISO 230-1, 2012.

【27】 T. A. M. Ruijl, J. van Eijk, “A novel ultra precision CMM based on fundamental design principles”, Proceedings of the ASPE Topical Meeting on Coordinate Measuring Machines, Vol 29, pp. 33-38, 2003.
【28】 翔寶電子(無作者,以網頁名稱做作者)(無日期)。全閉迴路、半閉迴路和開迴路定位系統,民109年06月22日取自:
http://www.1111motor.com/techinfo_05.htm
【29】 陳紹賢(民108年12月14日)。工具機機械設計工程師能力鑑定說明機電系統篇,民109年06月22日取自:
http://www.maonline.com.tw/article_inside.php?i=103
【30】 HEIDENHAIN官方網站。產品旋轉編碼器,民109年06月22日取自:
https://www.heidenhain.com/en_US/products/rotary-encoders/
【31】 HEIDENHAIN官方網站。產品線性編碼器,民109年06月22日取自:
https://www.heidenhain.com/en_US/products/linear-encoders/
【32】 J. M. Vaughan, Fabry-Perot interferometer history theory practice and applications, Adam Hilger (1989) 1-43.
【33】 L. H. Shyu, C. P. Chang, and Y. C. Wang, “Influence of Intensity Loss in the Cavity of a Folded Fabry-Perot Interferometer on Interferometric Signals”, Review of Scientific instrument, Vol. 82, No. 6, 063103, 2011.
【34】 K.K. Tan, S.N. Huang, T.H. Lee, “Geometrical error compensation and control of an XY table using neural networks”, Control Engineering Practice 14 (2006) 59–69.
【35】 王永成,張中平,黃志豪,張晉華,石宏達,黃貞綾(民104年),Smart calibration,民109年06月22日取自 FITI創新創業激勵計畫簡報。
【36】 RAINSHAW Laser System Manual, 2000-2005 Renishaw plc, Version 7.3.
【37】 RENISHAW官方網站。產品循圓檢測儀系統,民109年06月22日取自:
https://www.renishaw.com.tw/tw/qc20-w-ballbar-system--11075
【38】 HEIDENHAIN官方網站。產品格柵編碼器,民109年06月22日取自:
https://www.heidenhain.tw/zh_TW/%E7%94%A2%E5%93%81%E8%88%87%E6%87%89%E7%94%A8/%E6%AF%94%E8%BC%83%E5%99%A8%E7%B3%BB%E7%B5%B1/kgm/
【39】 JCGM 100: 2008, “Evaluation of Measurement data – Guide to the Expression of Uncertainty in Measurement”, First edition, 2008.
【40】 Jing Kong, Ai Zhou and Libo Yuan, “Temperature insensitive one-dimensional bending vector sensor based on eccentric-core fiber and air cavity Fabry-Perot interferometer”, Journal of Optics, Vol. 19, No. 4, March 2017.
【41】 K. A. Murphy, M. F. Gunther, A. M. Vengsarkar, and R. O. Claus, “Quadrature phase-shifted, extrinsic Fabry–Perot optical fiber sensors”, Optics Letters, Vol 16, No. 4, pp. 273-275, 1991.
【42】 C. P. Chang, P. C. Tung, L. H. Shyu, Y. C. Wang, E. Manske, “Multi-interferometric displacement measurement system with variable measurement mirrors”, Applied Optics, Vol. 52, No. 17, pp. 3902-3909, 2013.
【43】 G.Zhanga, R.Ouyanga, B.Lua, R.Hockenb, R.Vealeb, A.Donmezb, “A Displacement Method for Machine Geometry Calibration”, CIRP Annals, Volume 37, Issue 1, Pages 515-518, 1988.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top