跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.90) 您好!臺灣時間:2024/12/05 18:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林育興
論文名稱:利用管狀含砂水流探討流況及流速對混凝土抗沖磨性之影響
論文名稱(外文):The Effect of Flow Conditions and Flow Velocitys on the Abrasion Resistance of Concrete by Tubular Water Borne Sand Flow
指導教授:劉玉雯劉玉雯引用關係
學位類別:碩士
校院名稱:國立嘉義大學
系所名稱:土木與水資源工程學系研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:145
中文關鍵詞:管狀含砂水流水流流速閘門開度水流砂粒徑
外文關鍵詞:tubular sand containing water flowflow rategate opening degreefineness of the sand
相關次數:
  • 被引用被引用:1
  • 點閱點閱:91
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用管狀含砂水流沖擊試驗,探討在不同流速及流況下,混凝土抵抗含砂水流沖擊之抗磨性。試驗參數分別為水流流速 8 m/s、10 m/s、12 m/s及14 m/s,閘門開度為全開(A4)、3/4(A3)及2/4(A2),水流砂細度為F.M. 1.9及F.M. 2.9。
試驗結果顯示,在閘門全開時,主要磨損作用為水平磨擦作用;在閘門開度3/4時,第1顆試體為沖擊作用,而第2、3及4顆試體為水平磨擦作用;在閘門開度2/4時,第1及2顆試體為沖擊作用,而第3及4顆試體為水平磨擦作用。
水流流速從8 m/s至14 m/s區間時,混凝土耐磨性隨著流速提高而大幅降低。流速從8 m/s提升至10 m/s、12 m/s及14 m/s時,在閘門全開時,混凝土總磨耗體積增加113%、241%及267%;在3/4開度時,沖擊磨耗體積增加6%、35%及71%,磨擦磨耗體積增加105%、121%及213%;在2/4開度時,沖擊磨耗體積增加6%、29%及92%,磨擦磨耗體積增加208%、243%及343%。無論於何種閘門開度,混凝土之磨擦磨耗體積與流速間之關係,可由線性方程式y = 4.435x – 22.443 表示。
此外,水流中砂細度增加,由於動能並未增加,使得混凝土磨耗體差異不大。水流流速為8 m/s、10 m/s、12 m/s及14 m/s時,當水流中砂細度從F.M. 1.9提升為F.M. 2.9時,總磨耗體積分別增加7%、3%、3%及3%。
In this study, the tubular water borne sand flow impact test was used to explore the abrasion resistance of concrete against water borne sand flow impact under different flow velocitys and different flow conditions. The test parameters are flow velocitys about 8 m/s, 10 m/s, 12 m/s and 14 m/s. The gate opening are fully(A4), 3/4 (A3) and 2/4 (A2). The fineness of the sand are F.M. 1.9 and F.M. 2.9.
The test results show. When the gate is full opening(A4), the main wear effect is horizontal friction; when the gate is 3/4 opening(A3), the first sample is impacted, while the second, third, and fourth samples are horizontal friction; When the gate is 2/4 opening(A2), the first and second samples are impacted, while the third and fourth samples are horizontal friction.
When the flow velocitys are from 8 m/s to 14 m/s, the abrasion resistance of concrete decreases greatly with the increase of flow velocity. When the flow velocity is increased from 8 m/s to 10 m/s, 12 m/s and 14 m/s, when the gate is full opening, the total volume of concrete wear increases by 113%, 241% and 267%. At 3/4 opening, impact wear volume increased by 6%, 35% and 71%, friction wear volume increased by 78%, 91% and 171%. At 2/4 opening, impact wear volume increased by 6%, 29% and 92%, friction wear volume increased by 208%, 243% and 343%. Regardless of the gate opening, the relationship between the friction and wear volume of concrete and the flow velocity can be expressed by the linear equation y = 4.435x – 22.443.
In addition, when the fineness of sand in the water flow increases, but the kinetic energy does not increase, so that the concrete wear body has little difference. When the water flow velocitys are 8 m/s, 10 m/s, 12 m/s and 14 m/s, the sand fineness in the water flow is increased from F.M. 1.9 to F.M. 2.9, the total wear volume increases by 7%, 3%, 3% and 3%.
摘要.................................Ⅰ
Abstract............................Ⅱ
目錄................................Ⅲ
表目錄..............................IV
圖目錄..............................VI
第一章 緒論..........................1
1-1 研究背景.........................1
1-2 研究目的.........................2
1-3 研究內容.........................2
第二章 文獻回顧......................4
2-1 水工混凝土構造物沖磨機制...................4
2-2 水流條件對混凝土耐磨性之影響......................14
2-3 混凝土抗壓強度對耐磨性之影響......................19
2-4 卜作嵐材料對混凝土耐磨性之影響................21
第三章 試驗規劃與方法.........24
3-1 試驗規劃....................24
3-2 試體製作.....................26
3-3 試驗方法......................30
第四章 試驗結果分析與討論...........................38
4-1 混凝土新拌與硬固性質...........................38
4-2 流速對磨耗性之影響..........................42
4-3 開度對磨耗性之影響.............................73
4-4 砂細度對磨耗性之影響.......................112
第五章 結論與建議...............141
5-1 結論...........................141
5-2 建議............................142
參考文獻.........................143
[1]經濟部水利署,98年度水庫淤積潛勢評估,2010。
[2]ACI 210R-93 Erosion of Concrete in Hydraulic Structures.
[3]Plum D., Xufei F., A rock and a hard place, International Water Power & Dam construction, p.p.30-33, Jul.1996.
[4]Momberb A., Kovacevic R., Fundamental investigations on concrete wear by high velocity water flow, Wear 177, p.p.56-62, 1994.
[5]Hu X.G.,Momber A.W.,Yin Y.,Wang H., Cui D.M., High-speed hydrodynamic wear of steel-fiber reinforced hydraulic concrete, Wear 257, p.p.441-450, 2004.
[6]儲傳英,三峽工程混凝土原材料研究,1999。
[7]Momber A.W., The Erosion of Cement Paste Mortar and Concrete by Gritblasting, Wear 246, p.p.46-54, 2000.
[8]Cavitation Damage:Best Practices in Dam and Levee Safety Risk Analysis, Part F–Hydraulic Structures, Chapter F-3, 2017.
[9]X. Wang, Y. A. Hu, Z. H. Li, Experimemtal Study on Mechanism of the Combined Action of Cavitation Ersion and Abrasion at High Speed Flow, International Journal of Concrete Structures and Material 13, 2019.
[10]Gopal Mishra, Cavitation Damage to Concrete Structures and its Prevention Methods.
[11]黃子豪(劉玉雯教授指導),管狀含砂水流沖擊對混凝土耐磨性之影響,國立嘉義大學土木與水資源工程研究所碩士論文,2018。
12]Momber A.W., Mohan R.S., Kovacevic R., On-line analysis of hydro-abrasive erosion of pre-cracked materials by acoustic emission, Theoretical and Applied Fracture Mechanics 31, p.p.1-17, 1999.
[13]劉玉雯、朱孝宗,水工混凝土抵抗含砂水流沖擊之探討,混凝土科技,Vol. 3,pp.44-49,2009。
[14]方禹森(劉玉雯教授指導),聚脲材料應用於輸水隧道耐磨層之探討,國立嘉義大學土木與水資源工程研究所碩士論文,2018。
[15]Alaa M. Rashad*, Hosam El-Din H. Seleem, Amr F. Shaheen, Effect of Silica Fume and Slag on Compressive Strength and Abrasion Resistance of HVFA Concrete, International Journal of Concrete Structures and Material 8, 2014.
[16]Elżbieta Horszczaruk, Abrasion resistance of high-strength concrete in hydraulic structures, Wear 259, p.p.62-69, 2005.
[17]林建宏(詹穎雯教授指導),爐石混凝土水中磨耗性質研究,國立台灣大學土木工程學系研究所論文,1994。
[18]Wu C.H., en T., Liu Y.W., Hsu T.H., The Abrasion Erosion Resistance of Concrete Containing Blast Furnace Slag , International Confreence on Concrete and Reinforce Concrete Development Trends, Moscow Russian, p.p.566-570, 2005.
[19]Krishna Rao S.,Sravana P., Chandrasekhar Rao T., Investigating the effect of M-sand on abrasion resistance of Roller Compacted Concrete containing GGBS, Construction and Building Materials , Vol. 122, p.p.191-201,2016.
[20]Sokhwan Choi, John E. Bolander, A Topology Measurement Method Examining Hydraulic Abrasion of High Workability Concrete, KSCE Journal of Civil Engineering 16, p.p.771-778, 2012.
[21]Tsong Yen, Tsao-Hua Hus, Yu-Wen Liu, Shin-Ho Chen, Influence of class F fly ash on the abrasion –erosion resistance of high-strength concrete, Construction and Building Materials, Vol. 21, p.p.458-463, 2007.
[22]ACI 214R-02 Evaluation of Strength Test Results of Concrete.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top