(35.175.212.130) 您好!臺灣時間:2021/05/15 10:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:江正發
研究生(外文):Cheng-Fa Chiang
論文名稱:消費者採用行動支付服務之研究
論文名稱(外文):A study on the Consumer\'s Adoption of Mobile Payment Services
指導教授:許芳銘許芳銘引用關係
指導教授(外文):Fang-Ming Hsu
口試委員:陳澤義李坤清侯佳利劉英和
口試委員(外文):Tser-yieth ChenKun-Cing LeeJia-Li HouYing-Ho Liu
口試日期:2020-01-17
學位類別:博士
校院名稱:國立東華大學
系所名稱:企業管理學系
學門:商業及管理學門
學類:企業管理學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:153
中文關鍵詞:行動支付服務創新擴散理論整合科技接受模式知覺安全知覺創新知覺信任採用意圖推薦意圖
外文關鍵詞:M-payment servicesIDTUTAUTPerceived securityPerceived innovationPerceived trustIntention to adoptIntention to recommend
相關次數:
  • 被引用被引用:0
  • 點閱點閱:101
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著數位消費時代的來臨,仰賴行動裝置以完成數位消費成為現代生活中不可或缺的交易方式。對於消費者而言,行動支付服務所具有的特性、優勢成為影響消費者採用行動支付服務的重要因素。本研究透過紙本問卷與線上表單進行施測,藉由結合創新擴散理論與整合科技接受模式理論,調查智慧型手機消費者採用行動支付服務的意圖。
研究結果發現,從單一創新擴散理論而言,知覺創新、行動支付服務的便利性優勢與可達性優勢是影響行動支付服務創新擴散重要的因素是。其中,知覺創新會直接影響知覺安全,便利性直接影響知覺安全與知覺信任。另一方面,從單一整合科技接受模式理論而言,知覺易用性、知覺有用性及知覺信任對於採用意圖與推薦有直接的影響。知覺安全會直接影響知覺信任,並間接影響採用與推薦意圖。從兩個理論整體而言,創新擴散理論與整合科技接受模式理論的結合具有良好的解釋效果並且優於單一理論。
在性別調節作用方面,知覺創新與採用意圖間男性優於女性,在知覺創新與知覺易用性方面則無明顯的性別差異。在支付系統調節作用方面,可達性與知覺有用性之間、知覺信任與採用意圖之間、知覺信任與推薦意圖之間、知覺易用性與採用意圖之間、知覺易用性與知覺有用性之間、知覺有用性與採用意圖之間、採用意圖與推薦意圖間分別具有良好的預測解釋效果,但是交互作用未達到顯著水準。
In the era of digital consumption, needs for mobile devices to accomplish digital consumption has become an indispensable transaction in modern life. Regarding consumers, the characteristics and relative advantage of mobile payment services (MPS) become critical influence factors for their intention to adopt. Through paper and online questionnaires, this study integrates innovation diffusion theory (IDT) and unified theory of acceptance and use of technology (UTAUT) structure model to explore the factors that influence smartphone users’ intention to adopt MPS.
This study found that, from IDT, perceived innovation, convenience and reachability are important factors in the innovation diffusion of MPS. Among them, perceived innovation directly affects perceived security, and convenience directly affects perceived security and perceived trust. Besides, from UTAUT, that we can find the perceived ease of use, perceived usefulness and perceived trust immediately affect consumers’ intention to adopt. As well as, perceived security not only directly influence perceived trust, but also indiretly affect intention to adopt and recommend. Overall, integrating IDT and UTAUT has better interpretantion effect than single theory.
The gender has two moderating effect. The first effect is between in perceived innovation and intention to adopt. The effect from male is stronger than that from than female. The effect between perceived innovation and perceived ease of use, the male and female have no significant differece. In addition, the moderating effect of payment systems has no statistical significance. However, the relationship between reachability and perceived usefulness, between perceived trust and intention to adopt, between perceived trust and intention to recommend, between perceived ease of use and intention to adopt, between perceived ease of use and perceived usefulness, between perceived usefulness and intention to adopt, between intention to adopt and intention to recommend still are significant.
第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的與問題 5
第三節 研究流程 7
第四節 重要名詞解釋 8
第二章 文獻探討 11
第一節 行動支付服務的定義與發展 11
第二節 行動支付與服務的實證研究 19
第三節 創新擴散理論 33
第四節 整合科技接受模式理論 39
第三章 研究方法 57
第一節 研究概念與架構 57
第二節 研究假設 61
第三節 操作型定義與題項發展 68
第四節 問卷發放與資料收集程序 72
第五節 統計分析程序 73
第四章 研究結果 77
第一節 描述統計分析與信效度分析 77
第二節 結構方程模型分析 85
第五章 結果與討論 123
第一節 主要結果討論 123
第二節 調節作用結果討論 134
第六章 結論 135
第一節 理論貢獻 135
第二節 實務意涵 137
第三節 研究限制與未來研究 138
參考文獻 139
Agarwal, R., & Prasad, J. (1999). Are individual differences Germane to the acceptance of new information technologies. Decision Sciences, 30(2), 361-391.
Ajzen, I. (1985). From intentions to actions: A theory of planned behavior. In Action control (pp. 11-39): Springer.
Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179-211. doi:https://doi.org/10.1016/0749-5978(91)90020-T
Ajzen, I. (2002). Constructing a TPB questionnaire: Conceptual and methodological considerations.
Ajzen, I., & Fishbein, M. (1973). Attitudinal and normative variables as predictors of specific behavior. Journal of Personality and Social Psychology, 27(1), 41-57.
Al-Jabri, I., & Sohail, M. S. (2012). Mobile Banking Adoption: Application of Diffusion of Innovation Theory (Vol. 13).
Aldás‐Manzano, J., Ruiz‐Mafé, C., & Sanz‐Blas, S. (2009). Exploring individual personality factors as drivers of M‐shopping acceptance. Industrial Management & Data Systems, 109(6), 739-757. doi:10.1108/02635570910968018
Anckar, B., & D’Incau, D. (2002). Value Creation in Mobile Commerce Findings from a Consumer Survey. JITTA: Journal of Information Technology Theory & Application, 4(1), 43-65.
Anderson, G. (2014). Retail experts see hurdles to apple pay adoption. Retrieved February 16, 2015, from http://www.forbes.com/sites/retailwire/2014/09/11/retail-experts-see-hurdles-to-apple-pay-adoption/.
Arvidsson, N. (2014). Consumer attitudes on mobile payment services – results from a proof of concept test. International Journal of Bank Marketing, 32(2), 150-170. doi:10.1108/IJBM-05-2013-0048
Au, Y. A., & Kauffman, R. J. (2008). The economics of mobile payments: Understanding stakeholder issues for an emerging financial technology application. Electronic Commerce Research and Applications, 7(2), 141-164.
Bélanger, F., & Carter, L. (2008). Trust and risk in e-government adoption. The Journal of Strategic Information Systems, 17(2), 165-176.
Bachfischer, A., Lawrence, E., & Steele, R. (2004). Towards understanding of factors influencing user acceptance of mobile payment systems. Paper presented at the IADIS International Conference WWW/Internet.
Bandura, A. (1977). Self-efficacy: toward a unifying theory of behavioral change. Psychological review, 84(2), 191.
Bandura, A. (1986). Social foundations of thought and action: A social cognitive theory. Englewood Cliffs, NJ, US: Prentice-Hall, Inc.
Bandura, A., & Wood, R. (1989). Effect of perceived controllability and performance standards on self-regulation of complex decision making. Journal of Personality and Social Psychology, 56(5), 805.
Beatty, R. C., Shim, J. P., & Jones, M. C. (2001). Factors influencing corporate web site adoption: a time-based assessment. Information & management, 38(6), 337-354. doi:https://doi.org/10.1016/S0378-7206(00)00064-1
Bentler. (1995). EQS structural equations program manual. Encino, CA: Multivariate Software.
Bentler, & Bonett, D. G. (1980). Significance tests and goodness of fit in the analysis of covariance structures. Psychological Bulletin, 88(3), 588.
Bentler, & Wu, E. J. C. (1993). EQS/ Windows user’s guide (BMDP Statistical Software): Los Angeles: University of California.
Bhatti, T. (2007). Exploring Factors Influencing the Adoption of Mobile Commerce. Journal of Internet Banking and Commerce, 12(3).
BIS. (2012). Innovations in retail payments. Retrieved from https://www.bis.org/cpmi/publ/d102
Bollen, K. A. (1989). Structure equations with latent variables. New York: John Wiley.
Cao, X., Yu, L., Liu, Z., Gong, M., & Luqman, A. (2018). Understanding mobile payment users’ continuance intention: a trust transfer perspective. Internet Research, 28(2), 456-476. doi:http://dx.doi.org/10.1108/IntR-11-2016-0359
Chandra, S., Srivastava, S. C., & Theng, Y.-L. (2010). Evaluating the Role of Trust in Consumer Adoption of Mobile Payment Systems An Empirical Analysis. Communications of the Association for Information Systems, 27(29), 561-588.
Chang. (2014). A secure operational model for mobile payments. ScientificWorldJournal, 2014, 14. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/25386607
Chang, Chen, C. S., & Zhou, H. (2009). Smart phone for mobile commerce. Computer Standards & Interfaces, 31(4), 740-747.
Chang, M. K., Cheung, W., & Lai, V. S. (2005). Literature derived reference models for the adoption of online shopping. Information & management, 42(4), 543-559. doi:https://doi.org/10.1016/j.im.2004.02.006
Chen, L.-d., Gillenson, M. L., & Sherrell, D. L. (2002). Enticing online consumers: an extended technology acceptance perspective. Information & Management $V 39(8), 705-719.
Chen, X., & Li, S. (2017). Understanding Continuance Intention of Mobile Payment Services: An Empirical Study. Journal of Computer Information Systems, 57(4), 287-298. doi:10.1080/08874417.2016.1180649
Cheng, T. C. E., Lam, D. Y. C., & Yeung, A. C. L. (2006). Adoption of internet banking: An empirical study in Hong Kong. Decision Support Systems, 42(3), 1558-1572.
Clarke, I. (2001). Emerging value propositions for M-commerce. Journal of Business Strategies, 18(2), 133-149.
Clover, J. (2014a). Apple pay responsible for 1% of digital payment dollars in november, most popular at whole foods - mac rumors. Retrieved February 16, 2015, from
http://www.macrumors.com/2014/12/19/apple-pay-early-adoption-numbers.
Clover, J. (2014b). Apple pay responsible for two of every three contactless payments on visa, MasterCard, and american express - mac rumors. Retrieved February 16, 2015, from http://www.macrumors.com/2015/01/27/apple-pay-contactlesspayments.
Cordray, R. (2014). Top 5 high-profile cyber security breaches. Retrieved February 16, 2015, from. Retrieved from http://www.itbusiness.ca/blog/top-5-high-profile-cyber-securitybreaches-that-have-affected-millions/52793
Coursaris, C., Hassanein, K., & Head, M. (2003). M-Commerce in Canada: An Interaction Framework for Wireless Privacy. Canadian Journal of Administrative Sciences / Revue Canadienne des Sciences de l'Administration, 20(1), 54-73. doi:10.1111/j.1936-4490.2003.tb00305.x
Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. PSYCHOMETRIK, 16(3), 297-334.
Dahlberg, T., Guo, J., & Ondrus, J. (2015). A critical review of mobile payment research. Electronic Commerce Research and Applications, 14(5), 265-284. doi:10.1016/j.elerap.2015.07.006
Dahlberg, T., Mallat, N., Ondrus, J., & Zmijewska, A. (2008). Past, present and future of mobile payments research: A literature review. Electronic Commerce Research and Applications, 7(2), 165-181.
Damanpor, F. (1996). Bureaucracy and innovation revisited: Effects of contingency factors, industrial sectors, and innovation characteristics. The Journal of High Technology Management Research, 7(2), 149-173.
Danova, T. (2014). Mobile Is The Future Of Payments - Here's How Much Runway There Is For Growth. Retrieved from http://www.businessinsider.com/mobile-offline-retail-and-e-commerce-2013-12
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance. MIS Quarterly, 13(3), 319-340.
Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User Acceptance of Computer Technology: A Comparison of Two Theoretical Models. Management Science, 35(8), 982-1003.
Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1992). Extrinsic and intrinsic motivation to use computers in the workplace. Journal of applied social psychology, 22(14), 1111-1132.
Deci, E. L. (1971). Effects of externally mediated rewards on intrinsic motivation. Journal of Personality and Social Psychology, 18(1), 105.
Deci, E. L. (1972). Intrinsic motivation, extrinsic reinforcement, and inequity. Journal of Personality and Social Psychology, 22(1), 113.
Deci, E. L. (1975). Intrinsic motivation. New York, NY, US: Plenum Press.
Dewan, S. G., & Chen, L. D. (2005). Mobile payment adoption in the USA: A cross industry, cross-platform solution. Journal of Information Privacy and Security, 1(2), 4-28.
Di Pietro, L., Guglielmetti, R., Mattia, G., Renzi, M. F., & Toni, M. (2015). The Integrated Model on Mobile Payment Acceptance (IMMPA): An empirical application to public transport. Transportation Research Part C Emerging Technologies, 56. doi:10.1016/j.trc.2015.05.001
Ding, X., Ijima, J., & Ho, S. (2004). Unique features of mobile commerce. Journal of Electronic Science and Technology of China, 2(3), 205-210.
Doll, W. J., Xia, W., & Torkzadeh, G. (1994). A confirmatory factor analysis of the end-user computing satisfaction instrument. MIS Quarterly, 453-461.
Dooley, K. (1999). Towards a Holistic Model for the Diffusion of EducationalTechnologies: An Integrative Review of Educational InnovationStudies (Vol. 2).
Featherman, M. S., & Pavlou, P. A. (2003). Predicting e-services adoption: a perceived risk facets perspective. International Journal of Human-Computer Studies, 59(4), 451-474.
Fichman, R. G., Dos Santos, B. L., & Zheng, Z. (2014). Digital innovation as a fundamental and powerful concept in the information systems curriculum. MIS Quarterly, 38(2), 329-A315.
Figueiredo, R. M. F. (2006). Portais Escolares: Estudo de aceitação de um projecto para um portal Web num contexto de ensino.
Fishbein, M., & Ajzen, I. (1975). Belief, attitude, intention, and behavior: An introduction to theory and research. Reading, MA: Addison-Wesley.
Fishbein, M., & Ajzen, I. (1980). Understanding attitudes and predicting social behavior.
Flavián, C., & Guinalíu, M. (2006). Consumer trust, perceived security and privacy policy. Industrial Management & Data Systems, 106(5), 601-620.
Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 39-50.
George, J. F. (2002). Influences on the intent to make internet purchases. Internet Research, 12(2), 165-180.
Guo, J., & Bouwman, H. (2016). An analytical framework for an m-payment ecosystem: A merchants׳ perspective. Telecommunications Policy, 40(2-3), 147-167.
Hair, J. F. J., Black, W. C., Babin, B. J., & Anderson, R. E. (2010). Multivariate Data Analysis(7thEd.). Prentice-Hall Inc., Upper Saddle River(NJ.).
Hall, B. H. (2004). Innovation and diffusion (0898-2937). Retrieved from
Hauff, J. CONSUMER ACCEPTANCE OF MOBILE PAYMENT SERVICES.
Herrero Crespo, Á., & Rodríguez del Bosque, I. (2008). The effect of innovativeness on the adoption of B2C e-commerce: A model based on the Theory of Planned Behaviour. Computers in Human Behavior, 24(6), 2830-2847. doi:https://doi.org/10.1016/j.chb.2008.04.008
Hodges, B. E. (2009). Innovativeness and online shopping adoption. ETD Archive. 364. Retrieved from https://engagedscholarship.csuohio.edu/etdarchive/364
Hoffman, D. L., Novak, T. P., & Peralta, M. (1999). Building consumer trust online. Communications of the ACM, 42(4), 80-85.
Hongxia, P., Xianhao, X., & Weidan, L. (2011, 6-8 May 2011). Drivers and barriers in the acceptance of mobile payment in China. Paper presented at the 2011 International Conference on E-Business and E-Government (ICEE).
Hsu, C.-L., Lu, H.-P., & Hsu, H.-H. (2007). Adoption of the mobile Internet: An empirical study of multimedia message service (MMS). Omega, 35(6), 715-726. doi:https://doi.org/10.1016/j.omega.2006.03.005
Hsu, F.-M., & Chiang, C.-F. (2018). Examining Behavioral Intentions to Adopt and Recommend From Users’ Expectation Perspective. Paper presented at the 2018 Hong Kong International Conference on Education, Psychology and Society, Hong Kong.
Hu, L. t., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural equation modeling: a multidisciplinary journal, 6(1), 1-55.
Hyosun Stella, K., & Chidambaram, L. (2000, 7-7 Jan. 2000). A test of the technology acceptance model: the case of cellular telephone adoption. Paper presented at the Proceedings of the 33rd Annual Hawaii International Conference on System Sciences.
Im, I., Hong, S., & Kang, M. S. (2011). An international comparison of technology adoption: Testing the UTAUT model. Information & management, 48(1), 1-8. doi:https://doi.org/10.1016/j.im.2010.09.001
Jöreskog, K. G., & Sörbom, D. (1993). LISREL 8: Structural equation modeling with the SIMPLIS command language: Scientific Software International.
Jackson, J. D., Mun, Y. Y., & Park, J. S. (2013). An empirical test of three mediation models for the relationship between personal innovativeness and user acceptance of technology. Information & management, 50(4), 154-161.
Johnson, V. L., Kiser, A., Washington, R., & Torres, R. (2018). Limitations to the rapid adoption of M-payment services: Understanding the impact of privacy risk on M-Payment services. Computers in Human Behavior, 79, 111-122. doi:10.1016/j.chb.2017.10.035
Kadhiwal, S., & Zulfiquar, A. U. S. (2007). Analysis of mobile payment security measures and different standards. Computer Fraud & Security, 2007(6), 12-16. doi:10.1016/s1361-3723(07)70077-5
Kalinic, Z., Marinkovic, V., Molinillo, S., & Liébana-Cabanillas, F. (2019). A multi-analytical approach to peer-to-peer mobile payment acceptance prediction. Journal of Retailing and Consumer Services, 49, 143-153. doi:10.1016/j.jretconser.2019.03.016
Karahanna, E., & Straub, D. W. (1999). The psychological origins of perceived usefulness and ease-of-use. Information & management, 35(4), 237-250.
Karjaluoto, H., Koenig‐Lewis, N., Palmer, A., & Moll, A. (2010). Predicting young consumers' take up of mobile banking services. International Journal of Bank Marketing.
Kauffman, R. J., & Li, X. (2005). Technology competition and optimal investment timing: a real options perspective. IEEE Transactions on engineering management, 52(1), 15-29.
Keramati, A., Taeb, R., Larijani, A. M., & Mojir, n. (2012). A combinative model of behavioural and technical factors affecting ‘Mobile’-payment services adoption: an empirical study. The Service Industries Journal, 32(9), 1489-1504. doi:10.1080/02642069.2011.552716
Khalilzadeh, J., Ozturk, A. B., & Bilgihan, A. (2017). Security-related factors in extended UTAUT model for NFC based mobile payment in the restaurant industry. Computers in Human Behavior, 70, 460-474.
Kim, C., Mirusmonov, M., & Lee, I. (2010). An empirical examination of factors influencing the intention to use mobile payment. Computers in Human Behavior, 26(3), 310-322.
Kim, G., Shin, B., & Lee, H. G. (2009). Understanding dynamics between initial trust and usage intentions of mobile banking. Information Systems Journal, 19(3), 283-311.
Koenig-Lewis, N., Marquet, M., Palmer, A., & Zhao, A. L. (2015). Enjoyment and social influence: predicting mobile payment adoption. The Service Industries Journal, 35(10), 537-554. doi:10.1080/02642069.2015.1043278
Kolsaker, A., & Payne, C. (2002). Engendering trust in e‐commerce: a study of gender‐based concerns. Marketing intelligence & planning.
Kristoffersen, S., Synstad, A., & Sørli, K. (2008). Users' perception of mobile payment. Knowledge Management, X, 122-143. Retrieved from https://doi.org/10.1126/science.1117196
Lacro, E., Albritton, W., Janchanakit, N., & Yamazaki, M. (2006). The Wallet Phone in Japan and the United States. BUS 619: Information Technology Management, 1-22.
Lederer, A. L., Maupin, D. J., Sena, M. P., & Zhuang, Y. (2000). The technology acceptance model and the World Wide Web. Decision Support Systems, 29(3), 269-282. doi:https://doi.org/10.1016/S0167-9236(00)00076-2
Leestma, M., & Nohria, N. (2001). A Moving Target: The Mobile-Commerce Customer (Vol. 42).
Lent, R. W., Brown, S. D., & Hackett, G. (1994). Toward a unifying social cognitive theory of career and academic interest, choice, and performance. Journal of vocational behavior, 45(1), 79-122.
Leong, L.-Y., Hew, T.-S., Tan, G. W.-H., & Ooi, K.-B. (2013). Predicting the determinants of the NFC-enabled mobile credit card acceptance: A neural networks approach. Expert Systems with Applications, 40(14), 5604-5620.
Li, X. (2004). Informational cascades in IT adoption. Communications of the ACM, 47(4), 93-97.
Li, X., Kauffman, R. J., Yu, F., & Zhang, Y. (2014). Externalities, incentives and strategic complementarities: understanding herd behavior in IT adoption. Information Systems and e-Business Management, 12(3), 443-464.
Liébana-Cabanillas, F., Molinillo, S., & Ruiz-Montañez, M. (2019). To use or not to use, that is the question: Analysis of the determining factors for using NFC mobile payment systems in public transportation. Technological Forecasting and Social Change, 139, 266-276. doi:10.1016/j.techfore.2018.11.012
Liébana-Cabanillas, F., Muñoz-Leiva, F., & Sánchez-Fernández, J. (2018). A global approach to the analysis of user behavior in mobile payment systems in the new electronic environment. Service Business, 12(1), 25-64.
Liébana-Cabanillas, F., Ramos de Luna, I., & Montoro-Ríos, F. (2017). Intention to use new mobile payment systems: a comparative analysis of SMS and NFC payments. Economic Research-Ekonomska Istraživanja, 30(1), 892-910.
Liébana-Cabanillas, F., Sánchez-Fernández, J., & Muñoz-Leiva, F. (2014a). Antecedents of the adoption of the new mobile payment systems: The moderating effect of age. Computers in Human Behavior, 35, 464-478. doi:10.1016/j.chb.2014.03.022
Liébana-Cabanillas, F., Sánchez-Fernández, J., & Muñoz-Leiva, F. (2014b). The moderating effect of experience in the adoption of mobile payment tools in Virtual Social Networks: The m-Payment Acceptance Model in Virtual Social Networks (MPAM-VSN). International Journal of Information Management, 34(2), 151-166. doi:10.1016/j.ijinfomgt.2013.12.006
Lim, A. S. (2008). Inter-consortia battles in mobile payments standardisation. Electronic Commerce Research and Applications, 7(2), 202-213. doi:10.1016/j.elerap.2007.05.003
Lim, N. (2003). Consumers’ perceived risk: sources versus consequences. Electronic Commerce Research and Applications, 2(3), 216-228.
Lin, X., Featherman, M., & Sarker, S. (2017). Understanding factors affecting users’ social networking site continuance: A gender difference perspective. Information & management, 54(3), 383-395. doi:https://doi.org/10.1016/j.im.2016.09.004
Liu, J., Kauffman, R. J., & Ma, D. (2015). Competition, cooperation, and regulation: Understanding the evolution of the mobile payments technology ecosystem. Electronic Commerce Research and Applications, 14(5), 372-391. doi:https://doi.org/10.1016/j.elerap.2015.03.003
Lu, J., Wei, J., Yu, C.-s., & Liu, C. (2016). How do post-usage factors and espoused cultural values impact mobile payment continuation? Behaviour & Information Technology, 36(2), 140-164. doi:10.1080/0144929x.2016.1208773
Lu, Y., Yang, S., Chau, P. Y. K., & Cao, Y. (2011). Dynamics between the trust transfer process and intention to use mobile payment services: A cross-environment perspective. Information & management, 48(8), 393-403. doi:10.1016/j.im.2011.09.006
MacCallum, R. C., & Hong, S. (1997). Power analysis in covariance structure modeling using GFI and AGFI. Multivariate Behavioral Research, 32(2), 193-210.
Maillet, É., Mathieu, L., & Sicotte, C. (2015). Modeling factors explaining the acceptance, actual use and satisfaction of nurses using an Electronic Patient Record in acute care settings: An extension of the UTAUT. International journal of medical informatics, 84(1), 36-47.
Mallat, N. (2007). Exploring consumer adoption of mobile payments – A qualitative study. The Journal of Strategic Information Systems, 16(4), 413-432.
Mallat, N., Rossi, M., Tuunainen, V., & Öörni, A. (2009). The Impact of use Context on Mobile Services Acceptance: The Case of Mobile Ticketing (Vol. 46).
Manvi, S. S., Bhajantri, L. B., & Vijayakumar, M. A. (2009). Secure mobile payment system in wireless environment. In Proceedings of the International Conference Future Computer and Communication (ICFCC 2009). April 3–5, 31-35.
Marques, B. P., Villate, J. E., & Carvalho, C. V. (2011). Applying the UTAUT model in engineering higher education: Teacher's technology adoption. Paper presented at the 6th Iberian Conference on Information Systems and Technologies (CISTI 2011).
Massoth, M., & Bingel, T. (2009). Performance of different mobile payment service concepts compared with a NFC-based solution. Paper presented at the 2009 Fourth International Conference on Internet and Web Applications and Services.
Merchant, K. A. (1985). Organizational controls and discretionary program decision making: A field study. Accounting, Organizations and Society, 10(1), 67-85.
Merton, R. K. (1973). The sociology of science: Theoretical and empirical investigations: University of Chicago press.
Miltgen, C. L., Popovič, A., & Oliveira, T. (2013). Determinants of end-user acceptance of biometrics: Integrating the “Big 3” of technology acceptance with privacy context. Decision Support Systems, 56, 103-114.
Min, Q., Ji, S., & Qu, G. (2008). Mobile Commerce User Acceptance Study in China: A Revised UTAUT Model. Tsinghua Science & Technology, 13(3), 257-264. doi:https://doi.org/10.1016/S1007-0214(08)70042-7
Moe, W. W., & Schweidel, D. A. (2012). Online product opinions: Incidence, evaluation, and evolution. Marketing Science, 31(3), 372-386.
Mohammadi, S., & Jahanshahi, H. (2008). A study of major mobile payment systems’ functionality in Europe. In Proceedings of the 11th International Conference Computer and Information Technology (ICCIT 2008). December 24– 27, 605-610.
Montano, D. E., & Kasprzyk, D. (2015). Theory of reasoned action, theory of planned behavior, and the integrated behavioral model. Health behavior: Theory, research and practice, 70(4), 231.
Moore, G. C., & Benbasat, I. (1991). Development of an Instrument to Measure the Perceptions of Adopting an Information Technology Innovation. Information Systems Research, 2(3), 192-222. doi:10.1287/isre.2.3.192
Murphy, G. B., & Tocher, N. (2011). Gender differences in the effectiveness of online trust building information cues: An empirical examination. The Journal of High Technology Management Research, 22(1), 26-35.
Neuendorf, K. A., Blake, B. F., & Valdiserri, C. M. (2003). Innovativeness and variety of Internet shopping. Internet Research, 13(3), 156-169. doi:10.1108/10662240310478187
Ng-Kruelle, G., Swatman, P. A., Rebme, D. S., & Hampe, J. F. (2002). The price of convenience privacy and mobile commerce. Quarterly Journal of Electronic Commerce, 3(3), 273-285.
Nunnally, J. C. (1978). Psychometric theory (2nd ed.). New York: McGraw-Hill.
Nysveen, H., Pedersen, P. E., & Thorbjørnsen, H. (2005). Intentions to use mobile services: Antecedents and cross-service comparisons. Journal of the Academy of Marketing Science, 33(3), 330. doi:10.1177/0092070305276149
Obe, O. O., & Balogu, V. F. (2007). Practice, trends and challenges of mobile commerce in Nigeria. Information Technology Journal, 6(3), 448-456.
OECD. (2012). Report on Consumer Protection in Online and Mobile Payments. doi:doi:https://doi.org/10.1787/5k9490gwp7f3-en
Oliveira, T., Thomas, M., Baptista, G., & Campos, F. (2016). Mobile payment: Understanding the determinants of customer adoption and intention to recommend the technology. Computers in Human Behavior, 61, 404-414. doi:10.1016/j.chb.2016.03.030
Ondrus, J., & Pigneur, Y. (2006). Towards a holistic analysis of mobile payments A multiple perspectives approach. Electronic Commerce Research and Applications, 5, 246-257.
Oshlyansky, L., Cairns, P., & Thimbleby, H. (2007). Validating the Unified Theory of Acceptance and Use of Technology (UTAUT) tool cross-culturally. Paper presented at the Proceedings of the 21st British HCI Group Annual Conference on People and Computers: HCI... but not as we know it-Volume 2.
Park, J., Ahn, J., Thavisay, T., & Ren, T. (2019). Examining the role of anxiety and social influence in multi-benefits of mobile payment service. Journal of Retailing and Consumer Services, 47, 140-149. doi:10.1016/j.jretconser.2018.11.015
Pavlou, Liang, H., & Xue, Y. (2007). Understanding and mitigating uncertainty in online exchange relationships a principal-agent perspective. MIS Quarterly, 31(1), 105-136.
Pease, W., & Rowe, M. (2005). Diffusion of innovation-The Adoption of electronic commerce by small and medium enterprises (SMES)-A comparative analysis. Australasian Journal of Information Systems, 13(1).
Perry, M., O'Hara, K., Sellen, A., Brown, B., & Harper, R. (2001). Dealing with mobility: understanding access anytime, anywhere. ACM Transactions on Computer-Human Interaction, 8(4), 323-347.
Phuah, K. T., TingJL, J. L., & Wong, K. K. S. (2018). Understanding customer intention to use mobile payment services in Nanjing, China. International Journal of Community Development and Management Studies, 2, 049-060.
Qasim, H., & Abu-Shanab, E. (2016). Drivers of mobile payment acceptance: The impact of network externalities. Information Systems Frontiers, 18, 1021-1034. doi:10.1007/s10796-015-9598-6
Rahimian, V., & Habibi, J. (2008). MPaySmart: A Customer Centric Approach in Offering Efficient Mobile Payment Services. Paper presented at the 2008 IEEE Asia-Pacific Services Computing Conference.
Ramayah, T. (2020). Students’ choice intention of a higher learning institution: An application of the theory of reasoned action (TRA). Malaysian Management Journal, 7(1), 47-62.
Rogers, E. M. (1962). Diffusion of Innovations.
Rogers, E. M. (1976). New product adoption and diffusion. Journal of Consumer Research, 2(4), 290-301.
Rogers, E. M. (1983). Diffusion of Innovations, 3rd: New YorkLFree Press.
Rogers, E. M. (1995). Diffusion of innovations (4th ed.). New York: The Free Press.
Rogers, E. M. (2003). Diffusion of Innovations, 5th. New YorkLFree Press.
Rose, G., Khoo, H., & Straub, D. (1999). Current technological impediments to business-to-consumer electronic commerce. Communications of the AIS, 16, 1-74.
Rosenberg, N. (1972). Factors affecting the diffusion of technology. Explorations in economic history, 10(1), 3.
Rosenberg, N. (1982). Learning by Using,” in N. Rosenberg: Inside the Black Box. Cambridge, Cambridge University Press, 120-140.
Salisbury, W. D., Pearson, R. A., Pearson, A. W., & Miller, D. W. (2001). Perceived security and World Wide Web purchase intention. Industrial Management & Data Systems, 101(4), 165-177.
Schierz, P. G., Schilke, O., & Wirtz, B. W. (2010). Understanding consumer acceptance of mobile payment services: An empirical analysis. Electronic Commerce Research and Applications, 9(3), 209-216. doi:10.1016/j.elerap.2009.07.005
Schumacker, R. E., & Lomax, R. G. (2004). A beginner's guide to structural equation modeling (2nd ed.). Mahwah, NJ: Lawrence Erlbaum Associates.
Shao, Z., Zhang, L., Li, X., & Guo, Y. (2019). Antecedents of trust and continuance intention in mobile payment platforms: The moderating effect of gender. Electronic Commerce Research and Applications, 33. doi:10.1016/j.elerap.2018.100823
Shen, Y.-C., Huang, C.-Y., Chu, C.-H., & Hsu, C.-T. (2010). A benefit–cost perspective of the consumer adoption of the mobile banking system. Behaviour & Information Technology, 29(5), 497-511.
Shin, D.-H. (2009). Towards an understanding of the consumer acceptance of mobile wallet. Computers in Human Behavior, 25(6), 1343-1354.
Shin, D.-H. (2010). Modeling the Interaction of Users and Mobile Payment System: Conceptual Framework. International Journal of Human-Computer Interaction, 26(10), 917-940. doi:10.1080/10447318.2010.502098
Sidorova, A., Evangelopoulos, N., Torres, R., & Johnson, V. (2013). Introduction. In A. Sidorova, N. Evangelopoulos, R. Torres, & V. Johnson (Eds.), A Survey of Core Research in Information Systems (pp. 1-5). New York, NY: Springer New York.
Silbert, S. (2015). How mobile payments will grow in 2016. Retrieved January 1, 2017,. Retrieved from http://fortune.com/2015/10/29/mobile-payments-grow-2016/
Slade, E., Williams, M., Dwivedi, Y., & Piercy, N. (2015). Exploring consumer adoption of proximity mobile payments. Journal of Strategic Marketing, 23(3), 209-223. doi:10.1080/0965254x.2014.914075
Slade, E. L., Williams, M. D., & Dwivedi, Y. K. (2013). Mobile payment adoption: Classification and review of the extant literature. The Marketing Review, 13(2), 167-190.
Stuart, W. D. (2001). Influence of sources of communication, user characteristics and innovation characteristics on adoption of a communication technology.
Subramanian, G. H. (1994). A replication of perceived usefulness and perceived ease of use measurement. Decision Sciences, 25(5‐6), 863-874.
Surry, D. W. (1997). Diffusion Theory and Instructional Technology. Paper presented at the Annual Conference of the Association for Educational Communications and Technology (AECT), Albuquerque, New Mexico February 12-15.
Tan, M., & Teo, T. S. (2000). Factors influencing the adoption of Internet banking. Journal of the Association for information Systems, 1(1), 5.
Tao, Z. (2011). Understanding mobile Internet continuance usage from the perspectives of UTAUT and flow. Information Development, 27(3), 207-218. doi:10.1177/0266666911414596
Taylor, S., & Todd, P. A. (1995). Understanding Information Technology Usage: A Test of Competing Models. Information Systems Research, 6(2).
Teo, T. S. H., & Pok, S. H. (2003). Adoption of WAP-enabled mobile phones among Internet users. Omega, 31(6), 483-498. doi:10.1016/j.omega.2003.08.005
Thakur, R. (2013). Customer Adoption of Mobile Payment Services by Professionals across two Cities in India: An Empirical Study Using Modified Technology Acceptance Model. Business Perspectives and Research, 1, 17-29. doi:10.1177/2278533720130203
Thompson, R. L., Higgins, C. A., & Howell, J. M. (1991). Personal computing: toward a conceptual model of utilization. MIS Quarterly, 125-143.
Ting, H., Yacob, Y., Liew, L., & Lau, W. M. (2016). Intention to Use Mobile Payment System: A Case of Developing Market by Ethnicity. Procedia - Social and Behavioral Sciences, 224, 368-375. doi:10.1016/j.sbspro.2016.05.390
Triandis, H. C. (1977). Interpersonal behavior. Monterey, Calif: Brooks/Cole Pub. Co.
Ullman, J. B. (2001). Structural equation modeling. In B. G. Tabachnick and L. S. Fidell (2001), Using Multivariate Statistics (4th ed.). Needham Heights, MA: Allyn and Bacon.
Unnikrishnan, R., & Jagannathan, L. (2018). Do Perceived Risk and Trust affect Consumer Adoption of Mobile Payments? A Study of Indian Consumers. South Asian Journal of Management, 25(4), 74-100.
Van der Heijden, H. (2002). Factors affecting the successful introduction of mobile payment systems. BLED 2002 proceedings, 20.
Venkatesh, V. (2000). Determinants of Perceived Ease of Use: Integrating Control, Intrinsic Motivation, and Emotion into the Technology Acceptance Model. Information Systems Research, 11(4), 342-365. doi:10.1287/isre.11.4.342.11872
Venkatesh, V., & Bala, H. (2008). Technology acceptance model 3 and a research agenda on interventions. Decision Sciences, 39(2), 273-315.
Venkatesh, V., & Davis, F. D. (1996). A model of the antecedents of perceived ease of use Development and test. Decision Sciences, 27(3), 451-481.
Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology acceptance model Four longitudinal field studies. Management Science, 46(2), 186-204.
Venkatesh, V., Morris, M. G., Hall, M., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology Toward a unified view. MIS Quarterly, 27(3), 425-478.
Venkatesh, V., Thong, J. Y., & Xu, X. (2012). Consumer acceptance and use of information technology: extending the unified theory of acceptance and use of technology. MIS Quarterly, 36(1), 157-178.
Venkatesh, V., & Zhang, X. (2010). Unified Theory of Acceptance and Use of Technology: U.S. Vs. China. Journal of Global Information Technology Management, 13(1), 5-27. doi:10.1080/1097198X.2010.10856507
Vroom, V. H. (1964). Work and motivation. New York: Wiley.
Wang, L., & Yi, Y. (2012). The Impact of Use Context on Mobile Payment Acceptance: An Empirical Study in China, Berlin, Heidelberg.
Warshaw, P. R., & Davis, F. D. (1985). Disentangling behavioral intention and behavioral expectation. Journal of Experimental Social Psychology, 21(3), 213-228. doi:https://doi.org/10.1016/0022-1031(85)90017-4
Williams, M., Rana, N., Dwivedi, Y., & Lal, B. (2011). Is UTAUT really used or just cited for the sake of it? a systematic review of citations of UTAUT's originating article.
Xin, H., Techatassanasoontorn, A. A., & Tan, F. B. (2015). Antecedents of Consumer Trust in Mobile Payment Adoption. Journal of Computer Information Systems, 55(4), 1-10. doi:10.1080/08874417.2015.11645781
Xu, G., & Gutierrez, J. A. (2006). An exploratory study of killer applications and critical success factors in M-commerce. Journal of Electronic Commerce in Organizations, 4(3), 63-79.
Yang, H., & Zhou, L. (2011). Extending TPB and TAM to mobile viral marketing: An exploratory study on American young consumers’ mobile viral marketing attitude, intent and behavior. Journal of Targeting, Measurement and Analysis for Marketing, 19(2), 85-98. doi:10.1057/jt.2011.11
Yang, K. (2010). Determinants of US consumer mobile shopping services adoption: implications for designing mobile shopping services. Journal of consumer marketing, 27(3), 262-270.
Yi-Hsuan, L., Yi-Chuan, H., & Chia-Ning, H. (2011). Adding Innovation Diffusion Theory to the Technology Acceptance Model: Supporting Employees' Intentions to use E-Learning Systems. Journal of Educational Technology & Society, 14(4), 124-137. Retrieved from http://www.jstor.org/stable/jeductechsoci.14.4.124
Yi, M. Y., Fiedler, K. D., & Park, J. S. (2006). Understanding the role of individual innovativeness in the acceptance of IT‐based innovations: Comparative analyses of models and measures. Decision Sciences, 37(3), 393-426.
Zhou, T. (2011a). The effect of initial trust on user adoption of mobile payment. Information Development, 27(4), 290-300. doi:10.1177/0266666911424075
Zhou, T. (2011b). An empirical examination of initial trust in mobile banking. Internet Research, 21(5), 527-540. doi:10.1108/10662241111176353
Zhou, T. (2013). An empirical examination of continuance intention of mobile payment services. Decision Support Systems, 54(2), 1085-1091. doi:10.1016/j.dss.2012.10.034
Zhou, Z., Jin, X.-L., & Fang, Y. (2014). Moderating role of gender in the relationships between perceived benefits and satisfaction in social virtual world continuance. Decision Support Systems, 65, 69-79.
Zhu, K., Dong, S., Xu, S. X., & Kraemer, K. L. (2006). Innovation diffusion in global contexts: determinants of post-adoption digital transformation of European companies. European Journal of Information Systems, 15(6), 601-616. doi:10.1057/palgrave.ejis.3000650
邱皓政(2006)。量化研究與統計分析-SPSS中文視窗版資料分析範例解析(附光碟)。臺北市:五南。
邱皓政(2019)。量化研究與統計分析(六版):SPSS與R資料分析範例解析。臺北市:五南。
金融監督管理委員會(2016)。金融科技發展策略白皮書。Retrieved from https://www.fsc.gov.tw/ch/home.jsp?id=517&parentpath=0,7,478
金融監督管理委員會(2018)。行動支付與電子化支付普及之關鍵。台灣經濟論衡,16(2)。Retrieved from https://www.ndc.gov.tw/cp.aspx?n=E4C4020B5FB72C86&s=AC0139080833949F
胡自立(2015)。行動支付市場驅動因素與趨勢剖析。Retrieved from https://www.moea.gov.tw/MNS/doit/industrytech/IndustryTech.aspx?menu_id=13545&it_id=10
財團法人台灣網路資訊中心(2019a)。2019年台灣網路報告。Retrieved from https://report.twnic.tw/2019/
財團法人台灣網路資訊中心(2019b)。歷年個人及家庭上網行為趨勢分析。Retrieved from https://report.twnic.tw/2019/TrendAnalysis_internetUsage.html
陳寬裕、王正華(2017)。論文統計分析實務:SPSS與AMOS的運用(3版)。臺北市:五南。
陳燕鑾、許秋儀(2017)。以科技接受模式探討消費者使用手機支付行為的影響因素。行銷管理系研討會。德明財經科技大學。
曾裕文(2011)。我國行動支付之業務應用探討。財金資訊季刊,69,2-7。
電子全文 電子全文(網際網路公開日期:20250718)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top