跳到主要內容

臺灣博碩士論文加值系統

(44.192.38.248) 您好!臺灣時間:2022/11/27 06:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:YEMIMA PURBA
研究生(外文):YEMIMA PURBA
論文名稱:Synthesis of g-C3N4 and MgO-g-C3N4 Calcined at Different Temperatures, Characterization, and their Photocatalytic activity (Pollutant Degradation and Antimicrobial Activity)
論文名稱(外文):Synthesis of g-C3N4 and MgO-g-C3N4 Calcined at Different Temperatures, Characterization, and their Photocatalytic activity (Pollutant Degradation and Antimicrobial Activity)
指導教授:柯學初
指導教授(外文):Shyue-Chu Ke
口試委員:胡焯淳賴建智
口試委員(外文):Cho-Chun HuChien-Chih Lai
口試日期:2020-01-07
學位類別:碩士
校院名稱:國立東華大學
系所名稱:物理學系
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:68
外文關鍵詞:Photocatalysistg-C3N4MgO-g-C3N4Methylene BlueEschericia coli
相關次數:
  • 被引用被引用:0
  • 點閱點閱:53
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Catalyst g-C3N4 and MgO-g-C3N4 have synthesized using Furnace box. g-C3N4 is synthesized using melamine as a precursor then MgO is made dopant. g-C3N4 and MgO-g-C3N4 were synthesized with various temperatures, namely 450⁰C, 500⁰C, 550⁰C, 600⁰C, 650⁰C. Characterization was carried out to test the structure of g-C3N4 and MgO-g-C3N4. Characterization testing is carried out using UV-Visible Diffuse Reflectance Spectra (UV-Vis DRS), Fourier Transform Infra-Red (FT-IR), X-Ray Diffraction (XRD), X-Ray Photoelectron Spectrometer (XPS), Electron Paramagnetic Resonance (EPR). g-C3N4 and MgO-g-C3N4 have different characterizations in each temperature variation. Temperature of 550⁰C shows a very significant characterization when compared to other temperatures. The g-C3N4 and MgO-g-C3N4 band gap also experienced a shift from 2.82 eV to 2.7 eV. This shows adsorption isotherms part IV which shows characteristics of mesoporous structures that are in accordance with IUPAC in the classification of elements and compounds. Then for the application of g-C3N4 and MgO-g-C3N4 catalysts carried out on Methylene Blue pollutants and E-coli bacteria. At the temperature of synthesis 550⁰C this catalyst application works well, this is evidenced by the percentage decrease in each temperature variation, both in pollutants and bacteria. The most supportive thing is that characterization is also in line with the application and can be seen clearly through the results of the correspondence analysis between the rate of constant decrease in MB and E-coli with visible light minus the dark EPR signal.
Abstract ..................................................... i
Acknowledge .................................................. ii
Table of Contents ............................................ iv
List of Tables ............................................... vi
List of Figure .............................................. vii
List of Equation ............................................. ix
Chapter 1 Introduction ....................................... 1
1.1 Research Background ................................... 1
1.2 Research Motivation ................................... 2
1.3 Aim of the Thesis ..................................... 4
Chapter 2 Literature Review .................................. 6
2.1 Definition of Photocatalysist ............................ 6
2.2 Discovery and Development of g-C3N4 and MgO-g-C3N4 ....... 8
Chapter 3 Experimental Instruments and Principles ............ 11
3.1 Synthesis Techniques ..................................... 11
3.2 Characterization Technique ............................... 13
3.2.1 UV-Visible Diffuse Reflectance Spectra ................. 13
3.2.2 Fourier Transform Infra-Red ............................ 15
3.2.3 X-Ray Diffraction ...................................... 17
3.2.4 X-Ray Photoelectron Spectrometer ....................... 18
3.2.5 Electron Paramagnetic Resonance ........................ 19
Chapter 4 Experimental Materials and Method .................. 22
4.1 Synthesis Catalyst ....................................... 22
4.1.1 Preparation g-C3N4 ..................................... 22
4.1.2 Preparation MgO-g-C3N4 ................................. 23
4.2 Preparation Samples ...................................... 24
4.2.1 Preparation Methylene Blue Pollutant ................... 24
4.2.2 Culture Escherichia coli (E-coli) Bacteria ............. 24
Chapter 5 Results and Discussion ............................. 27
5.1 Characterization Analysis ................................ 27
5.1.1 UV-Visible Diffuse Reflectance Spectra ................. 27
5.1.2 Fourier Transform Infra-Red ............................ 29
5.1.3 X-Ray Diffraction ...................................... 30
5.1.4 X-Ray Photoelectron Spectrometer ....................... 31
5.1.5 Electron Paramagnetic Resonance ........................ 35
5.2 Application Analysis ..................................... 38
5.2.1 Photocatalytic Degradation of Methylene Blue ........... 38
5.2.2 Photocatalytic Anti-microbial of Escherichia coli ...... 43
Chapter 6 Conclusion ......................................... 50
References ................................................... 52
1. Dai, L., et al., Carbon nanomaterials for advanced energy conversion and storage. Small, 2012. 8(8): p. 1130-66.
2. Ong, W.J., et al., Graphitic Carbon Nitride (g-C3N4)-Based Photocatalysts for Artificial Photosynthesis and Environmental Remediation: Are We a Step Closer To Achieving Sustainability? Chem Rev, 2016. 116(12): p. 7159-329.
3. Bard, A.J. and M.A. Fox, Artificial Photosynthesis: Solar Splitting of Water to Hydrogen and Oxygen. Accounts of Chemical Research, 1995. 28(3): p. 141-145.
4. Kumar, P., et al., Photocatalytic degradation of methyl orange dye using silver (Ag) nanoparticles synthesized from Ulva lactuca. Colloids Surf B Biointerfaces, 2013. 103: p. 658-61.
5. Ramacharyulu, P.V.R.K., et al., Mechanistic insights into 4-nitrophenol degradation and benzyl alcohol oxidation pathways over MgO/g-C3N4 model catalyst systems. Catalysis Science & Technology, 2018. 8(11): p. 2825-2834.
6. Wang, X., et al., A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater, 2009. 8(1): p. 76-80.
7. Zeng, D., et al., Toward noble-metal-free visible-light-driven photocatalytic hydrogen evolution: Monodisperse sub–15 nm Ni2P nanoparticles anchored on porous g-C3N4 nanosheets to engineer 0D-2D heterojunction interfaces. Applied Catalysis B: Environmental, 2018. 221: p. 47-55.
8. Utamapanya, S., K.J. Klabunde, and J.R. Schlup, Nanoscale metal oxide particles/clusters as chemical reagents. Synthesis and properties of ultrahigh surface area magnesium hydroxide and magnesium oxide. Chemistry of Materials, 1991. 3(1): p. 175-181.
9. Bindhu, M.R., et al., Structural, morphological and optical properties of MgO nanoparticles for antibacterial applications. Materials Letters, 2016. 166: p. 19-22.
10. Malinowski, J., et al., Structure studies on nanocrystalline powder of MgO xerogel prepared by sol-gel method. MATERIALS SCIENCE-POLAND, 2009. 27: p. 201-207.
11. Pérez-Lorenzo, M., Palladium Nanoparticles as Efficient Catalysts for Suzuki Cross-Coupling Reactions. The Journal of Physical Chemistry Letters, 2012. 3(2): p. 167-174.
12. Li, H., et al., Synthesis and optical properties of single-crystal MgO nanobelts. Materials Letters, 2013. 102-103: p. 80-82.
13. Sterrer, M., et al., Energy Transfer on the MgO Surface, Monitored by UV− Induced H2 Chemisorption. Journal of the American Chemical Society, 2003. 125(1): p. 195-199.
14. Karthik, K., et al., Microwave assisted green synthesis of MgO nanorods and their antibacterial and anti-breast cancer activities. Materials Letters, 2017. 206: p. 217-220.
15. Nusheh, M., et al., Mechanically activated synthesis of single crystalline MgO nanostructures. Journal of Alloys and Compounds, 2010. 506(2): p. 715-720.
16. Mills, A. and S. Le Hunte, An overview of semiconductor photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry, 1997. 108(1): p. 1-35.
17. Di, J., et al., Preparation of sphere-like g-C3N4/BiOI photocatalysts via a reactable ionic liquid for visible-light-driven photocatalytic degradation of pollutants. Journal of Materials Chemistry A, 2014. 2(15).
18. Chen, S., et al., Metal selenide photocatalysts for visible-light-driven Z-scheme pure water splitting. Journal of Materials Chemistry A, 2019. 7(13): p. 7415-7422.
19. Chen, S., Metal selenide photocatalysts for visible-light-driven Z-scheme pure water splitting. Journal of Materials Chemistry A, 2019. 7.
20. Zhang, S., et al., Photocatalytic and magnetic properties two new Co(II) cluster-based metal-organic frameworks. Inorganic Chemistry Communications, 2019.
21. Gao, H., et al., Photocatalytic activity tuning in a novel Ag2S/CQDs/CuBi2O4 composite: Synthesis and photocatalytic mechanism. Materials Research Bulletin, 2019. 115: p. 140-149.
22. Banerjee, S., et al., New Insights into the Mechanism of Visible Light Photocatalysis. J Phys Chem Lett, 2014. 5(15): p. 2543-54.
23. Malato, S., et al., Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends. Catalysis Today, 2009. 147(1): p. 1-59.
24. Podporska-Carroll, J., et al., Antimicrobial properties of highly efficient photocatalytic TiO2 nanotubes. Applied Catalysis B: Environmental, 2015. 176-177: p. 70-75.
25. Colmenares, J.C. and R. Luque, Heterogeneous photocatalytic nanomaterials: prospects and challenges in selective transformations of biomass-derived compounds. Chem Soc Rev, 2014. 43(3): p. 765-78.
26. Zhao, H., et al., Fabrication of atomic single layer graphitic-C3N4 and its high performance of photocatalytic disinfection under visible light irradiation. Applied Catalysis B: Environmental, 2014. 152-153: p. 46-50.
27. Long, B., et al., Cubic mesoporous carbon nitride polymers with large cage-type pores for visible light photocatalysis. Journal of Materials Chemistry A, 2017. 5(31): p. 16179-16188.
28. Eid, K., et al., Precise fabrication of porous one-dimensional gC3N4 nanotubes doped with Pd and Cu atoms for efficient CO oxidation and CO2 reduction. Inorganic Chemistry Communications, 2019. 107.
29. Panneri, S., et al., Role of precursors on the photophysical properties of carbon nitride and its application for antibiotic degradation. Environ Sci Pollut Res Int, 2017. 24(9): p. 8609-8618.
30. Zambon, A., et al., s-Heptazine oligomers: promising structural models for graphitic carbon nitride. Chem Sci, 2016. 7(2): p. 945-950.
31. Annamalai, A., et al., Effect of Heating Mode on Sinterability of Fe-Ni Steels. The Journal of microwave power and electromagnetic energy : a publication of the International Microwave Power Institute, 2011. 45: p. 162-77.
32. Swietek, E., et al., Redox characterization of semiconductors based on electrochemical measurements combined with UV-Vis diffuse reflectance spectroscopy. Phys Chem Chem Phys, 2013. 15(34): p. 14256-61.
33. Schleeger, M., et al., Time-resolved flow-flash FT-IR difference spectroscopy: the kinetics of CO photodissociation from myoglobin revisited. Anal Bioanal Chem, 2009. 394(7): p. 1869-77.
34. van der Heide, P., X-ray Photoelectron Spectroscopy: An introduction to Principles and Practices. 2011: Wiley.
35. Watts, J.F. and J. Wolstenholme, An Introduction to Surface Analysis by XPS and AES. 2019: Wiley.
36. Schweiger, A. and G. Jeschke, Principles of Pulse Electron Paramagnetic Resonance. 2001: Oxford University Press.
37. Beckert, D., et al., Electron Paramagnetic Resonance. 2002: Royal Society of Chemistry.
38. Cooke, J.A. and L.J. Brown, Distance Measurements by Continuous Wave EPR Spectroscopy to Monitor Protein Folding, in Protein Folding, Misfolding, and Disease: Methods and Protocols, A.F. Hill, et al., Editors. 2011, Humana Press: Totowa, NJ. p. 73-96.
39. Kohno, M., Applications of Electron Spin Resonance Spectrometry for Reactive Oxygen Species and Reactive Nitrogen Species Research. Journal of Clinical Biochemistry and Nutrition, 2010. advpub: p. 1006170036-1006170036.
40. Kälin, M., I. Gromov, and A. Schweiger, The continuous wave electron paramagnetic resonance experiment revisited. Journal of Magnetic Resonance, 2003. 160(2): p. 166-182.
41. Prisner, T., M. Rohrer, and F. MacMillan, PULSED EPR SPECTROSCOPY: Biological Applications. Annual Review of Physical Chemistry, 2001. 52(1): p. 279-313.
42. Gregg, S.J. and K.S.W. Sing, Adsorption, surface area, and porosity. 1991: Academic Press.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top