(3.236.214.19) 您好!臺灣時間:2021/05/06 20:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:楊亞竣
研究生(外文):YA-CHUN YANG
論文名稱:Ru2-xFexNbAl 之熱電傳輸性質研究
論文名稱(外文):Electrical and thermal transport properties of Ru2-xFexNbAl
指導教授:郭永綱
指導教授(外文):Yung-Kang Kuo
口試委員:吳慶成蔡漢彰
口試委員(外文):CHING-CHENG WUHAN-CHANG TSAI
口試日期:2020-07-20
學位類別:碩士
校院名稱:國立東華大學
系所名稱:物理學系
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:54
中文關鍵詞:半金屬豪斯勒化合物
外文關鍵詞:semimetalHeusler compound
相關次數:
  • 被引用被引用:0
  • 點閱點閱:23
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究針對Ru2-xFexNbAl (x= 0.00, 0.13, 0.25, 0.38, 0.50)系列樣品於10 K – 300 K溫度區間進行電阻率(ρ)、熱電勢(Ѕ)及熱導率(κ) 等熱電傳輸性質量測,並計算熱電優質(ZT),以探討不同釕(Ru)和鐵(Fe)的摻雜比例對此系列樣品熱電傳輸影響。電阻率結果顯示隨鐵摻雜量增加整體數值降低,且行為由類似半導體性行為轉為類似金屬性行為,但由於此系列樣品殘餘電阻率比值很小,還是屬於半金屬。熱電勢量測結果為正值,顯示其主要傳輸載子為電洞,鐵摻雜量為 x = 0.13 時有最大值,其後隨著鐵摻雜量增加熱電勢降低。熱傳導率部分,隨著鐵比例的增加而下降,這是受點缺陷散射的影響,利用Wiedemann-Franz Law計算顯示此系列樣品主要由晶格熱導率貢獻。最後熱電優值在x=0.13最大值,比原型樣品提升了約兩倍,雖然熱導率和電阻率都有下降,但因熱電勢無法有效的提升,使得熱電優值除了x=0.13外,其他皆比原型樣品小。
In this thesis, the effects of partial Fe substitution on the Ru sites in the Ru2-xFexNbAl (x = 0.00, 0.13, 0.25, 0.38, 0.50) Heusler-type compounds were studied by means of electrical resistivity (ρ), Seebeck coefficient (S), and thermal conductivity (κ) measurement in the temperature range of 10 K to 300 K. The electrical resistivity of the Fe-substituted samples is found to decrease compared to that of the pristine Ru2NbAl sample. All studied samples could be classified as semimetal with a low residual resistivity ratio. The Seebeck coefficient of all studied samples is positive over the entire temperature range under investigation, suggesting that the dominant charge carriers are holes. We notice that the magnitude of the Seebeck coefficient increases for the x = 0.13 alloy, and decreases with further increase in the Fe content. The thermal conductivity decreases with increasing Fe content, presumably due to enhancement in the point-defect scattering. By using the Wiedemann-Franz Law, it is revealed that the thermal conductivity is mainly associated with phonons (lattice vibrations). An enhanced thermoelectric figure of merit (ZT) is achieved in Ru1.87Fe0.13NbAl (~6.7×10-3), about two times higher than that of Ru2NbAl (~3.5×10-3).
第一章 緒論 1
1.1 Fe2VAl簡介 1
1.2 Ru2VAl簡介 4
1.3 文獻回顧 4
1.4 研究動機 6
第二章 實驗原理 7
2.1電阻率 7
2.1.1電子的碰撞機制 10
2.2 Seebeck效應 13
2.2.1 Seebeck 係數 15
2.3 熱導率 19
2.3.1電子對熱導率的影響 21
2.3.2聲子對熱導率的影響 23
第三章 實驗方法 27
3.2量測系統與方法 27
3.2.1低溫冷卻系統 27
3.2.2電阻率量測方法 31
3.2.3熱導率量測方法 33
3.2.4 Seebeck係數量測方法 35
第四章 實驗結果與分析 37
4.1 X-Ray diffraction 分析 37
4.2 電阻率 (Electircal Resistivity) 39
4.3 熱電勢 (Seebeck coefficient) 43
4.4 熱傳導率 (Thermal conductivity) 47
4.5 熱電優值 (Figure of merit) 49
結論 51
參考文獻 53
1.Y.Nishino,Materials Transactions, Vol.42, No.6, pp.902 to 910 (2001).
2.Y.Nishino, M.Kato, S.Asano, K.Soda, M.Hayasaki, and U.Mizutani, Phys.Rev.Lett.79, 1909(1997).
3.G.Y.Guo, G.A.Botton and Y.Nishino, J.Phys.Condens. Matter10, L119(1998).
4.C.Kittel, Introduction to Solid State Physics, 8th Edition, Wiley.
5.Gerhard H.Fecher, a Hem C. Kandpal, Sabine Wurmehl, and Claudia Felser, JOURNAL OF APPLIED PHYSICS 99, 08J106 (2006).
6.G.Y.Guo, G.A.Botton and Y.Nishino, J.Phys.Condens. Matter 10, L119 (1998).
7.D.J.Singh and I.I.Mazin, Phys.Rev.B 57, 14352 (1998).
8.M.Weinert and R.E.Watson, Phys.Rev.B 58, 9732 (1998).
9.R.Weht and W.E.Pickett, Phys.Rev.B 58, 6855 (1988).
10.A.Bansil, S.Kaprzyk, P.E.Mijnarends, and J.Tobola, Phys.Rev.B 60, 13396 (1999).
11.C.S.Lue and Joseph H.Ross, Jr., Phys.Rev.B 61, 9863 (2000)
12.K.Soda, H.Murayama, K.Shimba, S.Yagi, J.Yuhara, T.Takeuchi,
U.zutani, H.Sumi, M.Kato, Y.Nishino, A.Sekiyama and
S.Suga, T.Matsushita and Y.Saitoh, Phys.Rev.B 71, 245112 (2005).
13.H. Miyazaki, K. Soda, M. Kato, S. Yagi, T. Takeuchi and Y. Nishino, Journal of Electron Spectroscopy and Related Phenomena 156, 347 (2007).
14.H.Okamura, J.Kawahara, T.Nanba, S.Kimura, K.Soda, U.Mizutani, Y.Nishino, M.Kato, I.Shimoyama, H.Miura, K.Fukui,K.Nakagawa, H.Nakagawa, and T.Kinoshita, Phys.Rev.Lett. 84, 3674 (2000).
15.C.S.Lue, J.H.Ross, Jr., C.F.Chang, and H.D.Yang, Phys.Rev.B 60, R13941 (1999).
16.G.A. Botton, Y.Nishino, C.J.Humphreys, Intermetallics. 8, 1209-1214 (2000).
17.林育新,【Ru2VAl1-xGax之熱電傳輸性質研究】(2016).
18.B. Ramachandran, Y.H.Lin, Y.K.Kuo, C.N.Kuo, A.A.Gippius, C.S.Lue, Intermetallics 92 (2018).
19.Y.Nishino, H.Kato, M.Kato, and U.Mizutani, Phys.Rev.B 63, 233303 (2001).
20.C.S.Lue and Y.K.Kuo, Phys.Rev.B 66, 085121 (2002).
21.C.S.Lue, W.J.Lai, C.C.Chen, and Y.K.Kuo, Phys. Conden.Matter, 16, 4283 (2004).
22.Y.Nishino, S.Deguchi, and U.Mizutani, Phys.Rev.B 74, 115115 (2006).
23.C.S.Lue, C.F.Chen, J.Y.Lin, Y.T.Yu, and Y.K.Kuo, Phys.Rev.B 75, 064204 (2007).
24.C.S.Lue, R.F.Liu, M.Y.Song, K.K.Wu and Y.K.Kuo, Phys.Rev.B 78, 1165117 (2008).
25.Sanchayita Mondal, Chandan Mazumdar, R.Ranganathan, Eric Alleno, P.C.Sreeparvathy,V.Kanchana, and G.Vaitheeswaran, Phys.Rev.B 98, 205130 (2018).
26.中國材料學會固態物理網路教材 (1999).
27.D.D.Pollock,Thermoelectricity, p111-132 (1985).
28.張佩琦,【鈦鎳基形狀記憶合金相變行為之熱電性質研究】(2017).
29.F.J.Blatt, P.A.Schroeder, C.L.Foiles and D.Greig, Thermoelectric Power of Metals, Plenum Press, New York (1976).
30.江仲鎰,【超導體材料Mo3Al2C摻雜鈮、釕之超導性質研究】(2013).
31.C.Kittel, Introduction to Solid State Physics, Wiley, New York
(2003).
32.N.W.Ashcroft and N.D.Mermin, Solid State Physics (1976).
33.M.Vasundhara and V.Srinivas, V.V.Rao, Phys.Rev.B 77, 224415 (2008)
34.David Jiles, Introduction to the Electronic Properties of Materials, Chapman and Hall, London, p46-48 (1994).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔