(3.236.118.225) 您好!臺灣時間:2021/05/16 11:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:陳杭期
研究生(外文):Hang-Chi Chen
論文名稱:以無機營養鹽養殖法探討不同養殖密度條件對於珊瑚礁仔魚存活率之影響
論文名稱(外文):Evaluation of different densities on coral reef fish larvae survival rate under inorganic fertilization method
指導教授:張桂祥張桂祥引用關係
指導教授(外文):Kwee-Siong Tew
口試委員:羅文增謝泓諺張桂祥
口試委員(外文):Wen-Tseng LoHung-Yen HsiehKwee-Siong Tew
口試日期:2020-07-24
學位類別:碩士
校院名稱:國立東華大學
系所名稱:海洋生物研究所
學門:自然科學學門
學類:海洋科學學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:52
中文關鍵詞:無機營養鹽施肥法養殖密度水族館海水觀賞魚
外文關鍵詞:Inorganic fertilizationstocking densitymarine ornamental fishaquarium
相關次數:
  • 被引用被引用:0
  • 點閱點閱:46
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
傳統的商業水產養殖業以單一餌料生物如輪蟲用作仔魚的飼料,然而與傳統方法相比,使用無機營養鹽施肥法可提高仔魚的存活率,但無機營養鹽施肥法中仔魚密度對浮游生物之影響尚不清楚。本實驗之研究目的:以無機鹽施肥法下,投放不同魚卵密度以探討仔魚存活率。實驗方法為將6個2000 L 的養殖桶注水後添加營養鹽並在實驗期間維持在氮:700 μg/L 及磷:100 μg/L, 第一次實驗魚卵投放密度為2.0 ind/L 與6.1 ind/L;第二次實驗魚卵投放密度為1.3 ind/L 與3.9 ind/L,皆進行3重複。實驗第5天後投放魚卵,實驗第15天計算存活率。實驗期間每日定時觀察浮游動物數目(10 μm¬-100 μm)並測量營養鹽、葉綠素a濃度。實驗結束後以手操網捕撈,計算最後存活魚隻。第一次實驗結果顯示高密度組存活率為2.49 ± 3.38 %,高於低密度組1.82 ± 2.79 %;第二次實驗結果高密度組存活率為12.32 ± 21.32 %,低密度組55.65 ± 38.94 % ,本次實驗之仔魚存活率皆沒有顯著差異。本次實驗各重複組之間存活率差異大,但在浮游動物充足的情況下,低投卵密度組總收穫魚隻數較高,而高密度養殖可培養出較多種類。本研究顯示利用後灣天然海水進行無機營養鹽施肥法,在氮磷比700 μg/L: 100 μg/L的養殖條件下可養殖不同種類的海水觀賞魚。
Traditional aquaculture has been using single species of live feed such as rotifers in larviculture. However, using inorganic fertilizers has proved to increase larval fish survival as compared to traditional method, but the effect of larval density on plankton is unclear. In this experiment, we tried different stocking densities using the inorganic fertilization method in coral reef fish larviculture. Fish eggs were stocked in six 2000 L tanks. In the first experiment, we stocked 2.0 ind/L vs. 6.1 ind/L; and in the second experiment, we stocked 1.3 ind/L vs. 3.9 ind/L, all in triplicates, and all tanks were fertilized with inorganic fertilizers and maintained at N: 700 µg/L and P: 100 µg/L. We measured water quality, nutrients, and chlorophyll a, as well as calculated zooplankton (10 μm¬-100 μm) density daily. We stocked eggs in day-5 and collected fish larvae in day-15. The results showed that fish survival rate was 1.82 ± 2.79 % in low density group, and 2.49 ± 3.38 % in the high density group in the first experiment, and 55.65 ± 38.94 % in low density group and 12.32 ± 21.32 % in the high density group in the second experiment. The stocking densities did not affect fish survival, probably due to high variation within each treatment. When sufficient zooplankton was present, we harvested more fish from the low density group, however, more species of fish were harvested from high density group. This study shows that inorganic fertilizer can be used in different kinds of marine ornamental fish larviculture.
摘要 i

Abstract iii

第一章 前言 1

第二章 材料與方法 7

第三章 結果 11

第四章 討論 17

第五章 結論 23

參考文獻 25

結果圖表 33

附綠 45
戴克遠 (2010)。尖翅燕魚的初期發育與微細構造之研究。國立屏東科技大學水產養殖系 碩士論文。
李宗瑞 (2015)。無機氮、磷施肥法對養殖疊波蓋刺魚、擬刺尾鯛及鷹金䱵仔魚初期活存影響之研究。國立東華大學海洋生物多樣性及演化組 碩士論文。
李昂格 (2017)。高氮磷鹽對珊瑚礁魚苗養殖之研究。國立東華大學海洋生物多樣性及演化組 碩士論文。
呂紹隆 (2020)。人工環境中黃足笛鯛( Lutjanus fulvus)(Forster, 1801)的自然產卵及初期生活史之研究。國立東華大學海洋生物多樣性及演化組 碩士論文。
何源興, 鄭明忠, 江玉瑛, 張文炳, 陳文義(2011) 。無齒魚參的初期發育及育苗。水產研究 19 (2): 45-54。
陳青毅 (2013)。營養鹽控制對初生點帶石斑(Epinephelus coides)魚苗存活之研究。國立屏東科技大學水產養殖系 碩士論文。
吳思楷 (2015)。提高無機氮濃度對珊瑚礁魚苗養殖之研究。國立東華大學海洋生物多樣性及演化組 碩士論文。
沖山宗雄(1998)。日本產稚魚圖鑑。東海大學出版會。1154頁。

NIEA W437.52C 水中氨氮之流動分析法-靛酚法。
NIEA W418.53C 水中亞硝酸鹽氮檢測方法-比色法。
NIEA W436.52C 水中硝酸鹽氮及亞硝酸鹽氮檢測方法-鎘還原流動分析法。
NIEA W443.51C 水中正磷酸鹽之流動注入分析法-比色法。
NIEA E507.03B 水中葉綠素 a 檢測方法-丙酮萃取法/分光光度計分析法。

Adewumi, A. (2006). The growth and gonadal maturation of the African catfish, Clarias gariepinus (Burchell) broodstock fed differently heated soybean‐based diets. Aquaculture Nutrition, 12(4), 267-274.
Allen, G. (1985). An annotated and illustrated catalogue of the lutjanid species known to date. FAO Fish. Synop(125).
Arifin, O. Z., Prakoso, V. A., Subagja, J., Kristanto, A. H., Pouil, S., & Slembrouck, J. (2019). Effects of stocking density on survival, food intake and growth of giant gourami (Osphronemus goramy) larvae reared in a recirculating aquaculture system. Aquaculture, 509, 159-166.
Battaglene, S., & Fielder, S. (1997). The status of marine fish larval-rearing technology in Australia. In Live Food in Aquaculture. Springer, pp. 1-5.
Bergerhouse, D. L. (1992). Lethal effects of elevated pH and ammonia on early life stages of walleye. North American Journal of Fisheries Management, 12(2), 356-366.
Culver, D., & Geddes, M. (1993). Limnology of rearing ponds for Australian fish larvae: relationships among water quality, phytoplankton, zooplankton, and the growth of larval fish. Marine and Freshwater Research, 44(4), 537-551.
Culver, D. A. (1991). Effects of the N: P ratio in fertilizer for fish hatchery ponds. Internationale Vereinigung für theoretische und angewandte Limnologie: Verhandlungen, 24(3), 1503-1507.
Dalabajan, D. (2005). Fixing the broken net: Improving enforcement of laws regulating cyanide fishing in the Calamianes Group of Islands, Philippines. SPC Live Reef Fish Information Bulletin, 15, 3-12.
Gibtan, A., Getahun, A., & Mengistou, S. (2008). Effect of stocking density on the growth performance and yield of Nile tilapia [Oreochromis niloticus (L., 1758)] in a cage culture system in Lake Kuriftu, Ethiopia. Aquaculture Research, 39(13), 1450-1460.
Harvey, H.R., Ederington, M.C., MacManus, G.B., 1997. Lipid composition of the marine ciliates Pleuronema sp. and Fabrea salina: Shifts in response to changes in diet. Eukaryotic Microbiology 44, 189-193.
Helal, H. A., & Culver, D. A. (1991). N: P ratio and plankton production in fish hatchery ponds. Internationale Vereinigung für theoretische und angewandte Limnologie: Verhandlungen, 24(3), 1508-1511.
Hessen, D. O., Faafeng, B. A., Smith, V. H., Bakkestuen, V., & Walseng, B. (2006). Extrinsic and intrinsic controls of zooplankton diversity in lakes. Ecology, 87(2), 433-443.
Holt, G. J. (2003). Research on culturing the early life stages of marine ornamental fish. Marine ornamental species: collection, culture and conservation, John Wiley & Sons, pp. 252-254.
Jacob, A. P., & Culver, D. A. (2010). Experimental evaluation of the impacts of reduced inorganic phosphorus fertilization rates on juvenile saugeye production. Aquaculture, 304(1-4), 22-33.
Jan, R.-Q. (2000). Resource limitation underlying reproductive strategies of coral reef fishes: a hypothesis. Zoologlcal Studies, 39(3), 266-274.
Leis, J. M. (1991). The pelagic stages of reef fishes: the larval biology of coral reef fishes. In Sale, P. F. (Eds), The Ecology of Fishes on Coral Reefs, pp. 183-230.
Liao, I. C., Su, H. M., & Chang, E. Y. (2001). Techniques in finfish larviculture in Taiwan. Aquaculture, 200(1-2), 1-31.
Liu, Y., Liu, H., Wu, W., Yin, J., Mou, Z., & Hao, F. (2019). Effects of stocking density on growth performance and metabolism of juvenile Lenok (Brachymystax lenok). Aquaculture, 504, 107-113.
Ma, Z., Qin, J. G., Hutchinson, W., & Chen, B. N. (2013). Food consumption and selectivity by larval yellowtail kingfish Seriola lalandi cultured at different live feed densities. Aquaculture Nutrition, 19(4), 523-534.
Madeira, D., & Calado, R. (2019). Defining research priorities to detect live fish illegally collected using cyanide fishing in Indo-Pacific coral reefs. Ecological Indicators, 103, 659-664. doi:10.1016/j.ecolind.2019.03.054
Meinelt, T., Kroupova, H., Stüber, A., Rennert, B., Wienke, A., & Steinberg, C. E. (2010). Can dissolved aquatic humic substances reduce the toxicity of ammonia and nitrite in recirculating aquaculture systems? Aquaculture, 306(1-4), 378-383.
Mies, M., Güth, A. Z., Scozzafave, M. S., & Sumida, P. Y. (2014). Spawning behaviour and activity in seven species of ornamental dottybacks. Journal of Zoo and Aquarium Research, 2(4), 117-122.
Murray, J. M., Bersuder, P., Davis, S., & Losada, S. (2020). Detecting illegal cyanide fishing: Establishing the evidence base for a reliable, post-collection test. Marine Pollution Bulletin, 150. doi:10.1016/j.marpolbul.2019.110770
Naas, K., & Harboe, T. (1992). Enhanced first feeding of halibut larvae (Hippoglossus hippoglossus L.) in green water. Aquaculture, 105(2), 143-156.
Nagano, N., Iwatsuki, Y., Kamiyama, T., & Nakata, H. (2000). Effects of marine ciliates on survivability of the first-feeding larval surgeonfish, Paracanthurus hepatus: laboratory rearing experiments. Hydrobiologia, 432(1-3), 149-157.
Olivotto, I., Leu, M. Y & Blázquez, M. (2017). Life cycles in marine ornamental species - fishes as a case study patterns of sexuality in fish. In Calado, R., Olivotto, I., Oliver, M. P., Holt, G. J. (Eds.), Marine Ornamental Species Aquaculture. Chichester: John Wiley & Sons, p. 23-49
Olivotto, I., Rollo, A., Sulpizio, R., Avella, M., Tosti, L., & Carnevali, O. (2006). Breeding and rearing the Sunrise Dottyback Pseudochromis flavivertex: the importance of live prey enrichment during larval development. Aquaculture, 255(1-4), 480-487.

Palmer, P. J., Burke, M. J., Palmer, C. J., & Burke, J. B. (2007). Developments in controlled green-water larval culture technologies for estuarine fishes in Queensland, Australia and elsewhere. Aquaculture, 272(1-4), 1-21.
Pandey, B.D., Yeragi, S.G., 2004. Preliminary and mass culture experiments on a heterotrichous ciliate, Fabrea salina. Aquaculture 232, 241-254
Porter, C. W., & Maciorowski, A. F. (1984). Spotted seatrout fingerling production in saltwater ponds. Journal of the World Mariculture Society, 15(1‐4), 222-232.
Prakash, S., Kumar, T. T. A., Raghavan, R., Rhyne, A., Tlusty, M. F., & Subramoniam, T. (2017). Marine aquarium trade in India: Challenges and opportunities for conservation and policy. Marine Policy, 77, 120-129.
Qin, J., & Culver, D. A. (1992). The survival and growth of larval walleye, Stizostedion vitreum, and trophic dynamics in fertilized ponds. Aquaculture, 108(3-4), 257-276.
Redfield, A. C. (1934). On the proportions of organic derivatives in sea water and their relation to the composition of plankton. James Johnstone memorial volume, 176-192.
Reeder, B. C., & Middleton, R. J. (2009). Advantage of organic supplementation of inorganic fertilizer in walleye (Sander vitreus) hatchery ponds at Minor Clark Fish Hatchery, KY. Journal of the Kentucky Academy of Science, 70(2), 152-161.
Reitan, K. I., Rainuzzo, J. R., Oie, G., & Olsen, Y. (1993). Nutritional effects of algal addition in first-feeding of turbot (Scophthalmus maximus L.) larvae. Aquaculture, 118(3-4), 257-275.
Rhodes, M. A., & Phelps, R. P. (2008). Evaluation of the ciliated protozoa, Fabrea salina as a first food for larval red snapper, Lutjanus campechanus in a large scale rearing experiment. Journal of Applied Aquaculture, 20(2), 120-133.
Rhyne, A. L., Tlusty, M. F., Szczebak, J. T., & Holmberg, R. J. (2017). Expanding our understanding of the trade in marine aquarium animals. PeerJ, 5, e2949.
Riley, C. M., & Holt, G. J. (1993). Gut contents of larval fishes from Iight trap and plankton net collections at Enmedio Reef near Veracruz, Mexico. Revista de Biologia Tropical, 53-57.
Rubec, P. J., Cruz, F., Pratt, V., Oellers, R., McCullough, B., & Lallo, F. (2001). Cyanide-free net-caught fish for the marine aquarium trade. Aquarium Sciences and Conservation, 3(1-3), 37-51.
Sargent, J., McEvoy, L., & Bell, J. (1997). Requirements, presentation and sources of polyunsaturated fatty acids in marine fish larval feeds. Aquaculture, 155(1-4), 117-127.
Schindler, D. (1977). Evolution of phosphorus limitation in lakes. Science, 195(4275), 260-262.
Shan, X., & Lin, M. (2014). Effects of algae and live food density on the feeding ability, growth and survival of miiuy croaker during early development. Aquaculture, 428, 284-289.
Sherr, E. B., & Sherr, B. F. (1994). Bacterivory and herbivory: key roles of phagotrophic protists in pelagic food webs. Microbial Ecology, 28(2), 223-235.
Smith, V. H. (1983). Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lake phytoplankton. Science, 221(4611), 669-671.
Sommer, U., Stibor, H., Katechakis, A., Sommer, F., Hansen, T., 2002. Pelagic food web configurations at different levels of nutrient richness and their implications for the ratio fish production: primary production. Hydrobilogia 484, 11-20
Spencer, P., Pollock, R., & Dubé, M. (2008). Effects of un-ionized ammonia on histological, endocrine, and whole organism endpoints in slimy sculpin (Cottus cognatus). Aquatic Toxicology, 90(4), 300-309.
Stevens, C., Croft, D., Paull, G., & Tyler, C. (2017). Stress and welfare in ornamental fishes: what can be learned from aquaculture? Journal of Fish Biology, 91(2), 409-428.
Stuart, K. R., & Drawbridge, M. (2011). The effect of light intensity and green water on survival and growth of cultured larval California yellowtail (Seriola lalandi). Aquaculture, 321(1-2), 152-156.
Suckling, C. C., Terrey, D., & Davies, A. J. (2018). Optimising stocking density for the commercial cultivation of sea urchin larvae. Aquaculture, 488, 96-104.
Tew, K. S., Chang, Y. C., Meng, P. J., Leu, M. Y., & Glover, D. C. (2016). Towards sustainable exhibits–application of an inorganic fertilization method in coral reef fish larviculture in an aquarium. Aquaculture Research, 47(9), 2748-2756.
Tew, K. S., Conroy, J. D., & Culver, D. A. (2006). Effects of lowered inorganic phosphorus fertilization rates on pond production of percid fingerlings. Aquaculture, 255(1-4), 436-446.
Tew, K. S., Meng, P. J., Lin, H. S., Chen, J. H., & Leu, M. Y. (2013). Experimental evaluation of inorganic fertilization in larval giant grouper (E .pinephelus lanceolatus Bloch) production. Aquaculture Research, 44(3), 439-450.
Treasurer, J., Atack, T., Rolton, A., Walton, J., & Bickerdike, R. (2011). Social, stocking density and dietary effects on the failure of farmed cod Gadus morhua. Aquaculture, 322, 241-248.
Wabnitz, C., Taylor, M., Green, E & Razak, T., 2003. From Ocean to Aquarium. UNEP–WCMC, Cambridge, UK, pp 64.
Watanabe, T., & Kiron, V. (1994). Prospects in larval fish dietetics. Aquaculture, 124(1-4), 223-251.
Wullur, S., Sakakura, Y., & Hagiwara, A. (2009). The minute monogonont rotifer Proales similis de Beauchamp: Culture and feeding to small mouth marine fish larvae. Aquaculture, 293(1-2), 62-67.
Zahedi, S., Akbarzadeh, A., Mehrzad, J., Noori, A., & Harsij, M. (2019). Effect of stocking density on growth performance, plasma biochemistry and muscle gene expression in rainbow trout (Oncorhynchus mykiss). Aquaculture, 498, 271-278.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top