跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.0) 您好!臺灣時間:2024/04/17 23:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張景茹
研究生(外文):Jing-Ru Chang
論文名稱:具幾何相位結構之毫米波波段波導與超穎表面天線之特性研究
論文名稱(外文):Research of mmWave waveguide-fed metasurface antenna with geometric phase structure
指導教授:林楚軒王智明王智明引用關係
指導教授(外文):Chu-Hsuan LinChien-Ming Wang
口試委員:王智明林楚軒陳美杏
口試委員(外文):Chien-Ming WangChu-Hsuan LinMei-Hsin Chen
口試日期:2019-12-20
學位類別:碩士
校院名稱:國立東華大學
系所名稱:光電工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:35
中文關鍵詞:超穎表面波導幾何相位毫米波
外文關鍵詞:metasurfacewaveguidegeometric phasemmWave
相關次數:
  • 被引用被引用:0
  • 點閱點閱:243
  • 評分評分:
  • 下載下載:33
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文探討超穎表面結合介電質波導之特性,而介電質波導具有波導共振,當波導產生共振時,反射相位會有所改變,此為本篇論文之探討目的。毫米尺寸具有較方便製作的優點,天線尺寸小、頻率高,可調製的頻寬大。超穎材料特殊的材料特性使其在應用上擁有莫大的潛能,而波束轉向也是超穎材料的眾多應用之一。本篇論文利用波導來改變反射相位,藉此達到波束轉向,此法不僅不會受到Pancharatnam-Berry相位的限制,還可輕易地調控波束。在工作波長13.12mm時,反射相位在波導厚度6.3mm時有接近的相移。而不同厚度之波導擁有不同的反射相位,將不同厚度的波導排列後即可反射具有指向性的波束,可應用於相位陣列雷達,將不同厚度的波導改變排列,波束的反射方向也隨之改變,即可達到掃描之功能。未來也可應用於基地台,將訊號準確地發射到目的地,避免浪費能源。
We are discussing the properties of metasurface combines with dielectric waveguides. Dielectric waveguides have waveguide resonance. When the waveguide resonates, the reflection phase will change. This is the purpose of this paper. The millimeter size has the advantages of easier production, the antenna size is small, the frequency is high, and the bandwidth that can be modulated. Metamaterials have been extensively studied in the current research areas. Its special material properties make metamaterials have great potential in applications, and beam steering is one of the many applications of metamaterials. In this paper, we use waveguides to change the reflection phase, so as to beam steering. This method is not only unlimited by the Pancharatnam-Berry phase, but also can easily adjust the beam. When  =13.12mm, the reflection phase has a phase shift close to  at a waveguide thickness = 6.3mm. Waveguides with different thicknesses have different reflection phases. After arranging waveguides with different thicknesses, they can reflect directional beams. It can apply to phase array radar to change the arrangement of waveguides of different thicknesses. The reflection direction of the beam changes accordingly, and the scanning function can be achieved. It can also apply to base stations in the future to accurately transmit signals to their destinations and avoid wasting energy.
致謝 2
摘要 3
Abstract 3
目錄 4
圖目錄 6
表目錄 7
第一章 緒論 8
1.1前言 8
1.2文獻回顧 8
1.3研究動機 10
第二章 波導與超穎材料介紹 11
2-1 介電平面波導介紹 11
2-2 磁偶共振 12
2-3超穎材料與超穎表面的介紹 13
第三章 天線特性與幾何相位原理 14
3-1 奈米天線 14
3-2貝比芮原理(Babinet's principle) 17
3-3 Pancharatnam-Berry相位 18
第四章 具波導結構的超穎表面製作與模擬 19
4-1 實驗架構 19
4-2 實驗模擬 24
第五章 具波導結構的超穎表面之實驗結果與論文結論 25
5-1 實驗結果 26
5-2 梯度板 29
5-3 結果討論 31
5-4 論文結論 32
[1] J. B. Pendry, “Negative Refraction Makes a Perfect Lens”, Physical Review Letters, Volume 85, Pages 3966- 3969, (2000).
[2] J. B. Pendry. “A Chiral Route to Negative Refraction”, Science, Volume 306, Pages 1353-1355, (2004).
[3] J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy and X. Zhang. “Optical Negative Refraction in Bulk Metamaterials of Nanowires”, Science, Volume 321, Pages 930, (2008).
[4] H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator”, Nature Photonics, Volume 3, Pages 148-151, (2009).
[5] C. Bo Han, H. You Zhe, L. Yung-Chiang and T. Din Ping, “Optical Hybrid-Superlens Hyperlens for Superresolution Imaging”, IEEE Journal of Selected Topics in Quantum Electronics, Volume 19, Pages 4601305-4601305 (2013).
[6] B. H. Cheng, Y.-C. Lan and D. P. Tsai, “Breaking Optical diffraction limitation using Optical Hybrid-Super-Hyperlens with Radially Polarized Light”, Optics Express, Volume 21, Pages 14898, (2013).
[7] S. Larouche, Y.-J. Tsai, T. Tyler, N. M. Jokerst and D. R. Smith, “Infrared metamaterial phase holograms”, Nature Materials, Volume 11, Pages 450-454, (2012).
[8] W. Cai, U. K. Chettiar, A. V. Kildishev and V. M. Shalaev, “Optical cloaking with metamaterials”, Nature Photonics, Volume 1, Pages 224-227, (2007).
[9] S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith and J. Pendry, “Full-wave simulations of electromagnetic cloaking structures”, Physical Review E, Volume 74, Pages 036621, (2006).
[10] J. Li and J. B. Pendry, “Hiding under the Carpet: A New Strategy for Cloaking”, Physical Review Letters, Volume 101, Pages 203901, (2008).
[11] N. Shitrit, I. Yulevich, E. Maguid, D. Ozeri, D. Veksler, V. Kleiner and E. Hasman, “Spinoptical Metamaterials: A Novel Class of Metasurfaces”, Optics and Photonics News, Volume 24, Pages 53, (2013).
[12] S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou and D. P. Tsai, “High-Efficiency Broadband Anomalous Reflection by Gradient Meta-Surfaces”, Nano Letters, Volume 12, Pages 6223 -6229, (2012).
[13] N Yu, P Genevet, M Kats, F Aieta, J Tetienne, F Capasso, Z Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction”, Science, Volume 334, Pages 333-337, (2011).
[14]林浩存,蔡定平. “超穎介面介紹與其應用”, 物理雙月刊, Volume 36, Pages 264-271 (2014).
[15] Phased Arrays and Radars – Past, Present and Future; Retrieved from: https://web.archive.org/web/20071031083529/http://www.mwjournal.com/article.asp?HH_ID=AR_29
[16] Active Electronically Steered Arrays; Retrieved from: http://www.ausairpower.net/aesa-intro.html
[17] A Kildishev, A Boltasseva, V Shalaev, “Planar Photonics with Metasurfaces”, Science, Volume 339, Pages 1232009-1232009, (2013).
[18] M Kang, T Feng, H Wang, J Li, “Wave front engineering from an array of thin aperture antennas”, Optics Express, Volume 20, Pages 15882, (2012).
[19] S Larouche, Y Tsai, T Tyler, N Jokerst, D Smith, “Infrared metamaterial phase holograms”, Nature Materials, Volume 11, Pages 450-454, (2012).
[20] Robert E. Collin, “ Field Theory of Guided Waves”, Physics Today, Volume 14, Pages 50-51, (1960).
[21] A. W. Snyder and J. D. Love, “Optical Waveguide Theory”, IEEE Journal of Quantum Electronics, Volume 20, Pages 1217-1217, (1983).
[22] E Hutter, J Fendler, “Exploitation of Localized Surface Plasmon Resonance”, Advanced Materials, Volume 16, Pages 1685-1706, (2004).
[23] L Cong, P Pitchappa, Y Wu, L Ke, C Lee, N Singh, H Yang, R Singh, “Active Multifunctional Microelectromechanical System Metadevices: Applications in Polarization Control, Wavefront Deflection, and Holograms”, Advanced Optical Materials, Volume 5, Pages 1600716, (2016).
[24] M. Pelton, J. Aizpurua and G. W. Bryant, “Metal‐nanoparticle plasmonics”, Laser & Photonics Review, Volume 2, Pages 136-159, (2008).
[25] I. Romero, J. Aizpurua, G.W. Bryant and F.J. García de Abajo, “Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers” Optics Express, Volume 14, Pages 9988, (2006)
[26] Quantum kisses between optical nanoantennas; Retrieved from: https://mappingignorance.org/2013/02/11/quantum-kisses-between-optical-nanoantennas/
[27] Max Born, “Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light” Physics Today, Volume 53, Pages77-78, (2000)
[28] B.D.Guenther, “Encyclopedia of Modern Optics”, Volume 43, Pages 11-13(2005)
[29] S Pancharatnam, “Generalized theory of interference, and its applications” Proceedings of the Indian Academy of Sciences - Section A, Volume 44, Pages 398-417 (1956)
[30] M Berry, “The Adiabatic Phase and Pancharatnam's Phase for Polarized Light”Journal of Modern Optics, Volume 34, Pages 1401-1407 (1987)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top