(3.236.222.124) 您好!臺灣時間:2021/05/08 05:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃榮澤
研究生(外文):Jung-Tse Hung
論文名稱:低閥值連續式室溫下運作之量子點雷射
論文名稱(外文):Low-threshold and Continuous-wave Quantum Dot Laser Operating at Room Temperature
指導教授:賴建智曾賢德
指導教授(外文):Chien-Chih LaiShien-Der Tzeng
口試委員:李明威江海邦馬遠榮
口試委員(外文):Ming-Way LeeHai-Pang ChiangYuan-Ron Ma
口試日期:2020-07-30
學位類別:碩士
校院名稱:國立東華大學
系所名稱:光電工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:68
中文關鍵詞:量子點雷射連續式光纖
外文關鍵詞:Quantum DotLaserContinuous-waveFiber
相關次數:
  • 被引用被引用:0
  • 點閱點閱:28
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文使用硒化鎘量子點(CdSe/ZnS)均勻吸附在光纖上,並分析其發光性質與特性鑑定。量子點是一種典型的奈米材料結構由核/殼組成,其具有晶格力度強、性能穩定等特性。此外,藉由改變量子點的大小,來改變其能隙寬度,就可以改變發光波長,這種現象稱之為量子侷限效應。量子點的發光波長涵蓋整個可見光範圍,放光明亮且穩定,並具有高量子效率、窄半峰全寬的優點。為了應用於量子點雷射,選擇高量子效率的紅色量子點作為雷射增益介質,將YAG光纖做為共振結構,YAG是一種人造晶體,具有堅硬穩定的結構、高損壞閥值、高導熱係數、良好的機械及光學特性,很適合應用於雷射共振腔結構。為了結合量子點和光纖,我們使用MPTMS ((3-Mercaptopropyl) trimethoxysilane)來修飾光纖表面以利量子點吸附,增加量子點吸附在光纖上的均勻度與穩定性。
進一步量測量子點光纖的螢光光譜,我們得到量子點光纖上有共振腔效果的螢光光譜,而有共振腔效果的螢光光譜半峰全寬則為0.82 nm,此外,我們測量量子點的螢光生命週期得到9.7 ns。這結果與我們在量子點溶液中所測得的光譜結果(半峰全寬31.24 nm,螢光生命週期20.5 ns)明顯的不同。再使用偏振片量測螢光光譜的極化方向,幅度約為58.4%。
根據研究成果顯示將量子點吸附在光纖上可以觀察到共振腔效果的螢光光譜、量子點螢光強度上升、半峰全寬變窄、螢光生命週期縮短和有偏振方向性。此量子點能作為雷射增益物質,光纖作為共振腔結構,有成為量子點雷射的前景。
關鍵字:量子點、雷射、連續式、光纖。
In this study, use the cadmium selenide quantum dots (CdSe/ZnS) are uniformly adsorbed on the optical fiber, and its luminescence properties and characterization are analyzed. Quantum dots are a typical nanomaterials structure composed of core/shell, which has the characteristics of strong lattice strength and stable performance. In addition, by changing the size of the quantum dots to change its energy gap width, the emission wavelength can be changed. This phenomenon is called quantum confinement effect. The emission wavelength of quantum dots covers the entire visible light range, emits bright, stable light, and has the advantages of high quantum efficiency and narrow full width at half maximum. For application quantum dot lasers, red quantum dots with high quantum efficiency are selected as the laser gain medium, and YAG fiber is used as the resonant structure. YAG is an artificial crystal with a hard and stable structure, high damage threshold, and high thermal conductivity, good mechanical and optical properties, very suitable for use in laser cavity structure. In order to combine quantum dots and optical fibers, we use MPTMS ((3-Mercaptopropyl) trimethoxysilane) to modify the surface of the optical fibers to facilitate the adsorption of quantum dots and increase the uniformity and stability of the adsorption of quantum dots on the optical fiber.
According to the research results, it is possible to observe the fluorescence spectrum of the resonant cavity effect by adsorbing the quantum dots on the optical fiber, the fluorescence intensity of the quantum dots increases, the full width at half maximum is narrowed, the fluorescent life cycle is shortened, and there is polarization directionality. This quantum dot can be used as a laser gain material, and the optical fiber as a resonant cavity structure has the prospect of becoming a quantum dot laser.
Keywords: quantum dots, laser, continuous-wave, fiber.
第一章 緒論 1
1-1、前言 1
1-2、量子點簡介 1
1-3、雷射之共振結構 2
1-4、釔鋁石榴石光纖 3
1-5、光纖製作 4
1-6、文獻回顧 4
1-7、研究動機 7
第二章 實驗材料準備及方法 9
2-1、實驗儀器與藥品 9
2-1-1、實驗藥品 9
2-1-2、實驗儀器 10
2-2、樣品製作 14
2-2-1、量子點溶液製備 14
2-2-2、Fiber光纖樣品的清洗 15
2-2-3、Fiber光纖表面修飾MPTMS分子膜 15
2-2-4、Fiber光纖表面單層量子點吸附 16
第三章 實驗結果 17
3-1、量子點溶液螢光訊號 17
3-2、量子點光纖切面圖 20
3-3、2-D & 3-D螢光分布圖 22
3-4、量子點大小及組成 24
3-5、光致螢光光譜分析 27
3-6、量子點光纖的螢光光譜和螢光生命週期分析 31
3-6-1、不同直徑大小的量子點光纖在矽基板上的螢光光譜和螢光生命週期 31
3-6-2、量子點光纖在金基板上的螢光光譜和螢光生命週期 48
3-6-3、量子點光纖在矽和金基板上的比較 52
3-7、量子點光纖的偏振分析 54
第四章 結論 57
參考文獻 59
[1] S. White, and M. Cataluna, “Unlocking Spectral Versatility from Broadly-Tunable Quantum-Dot Lasers”, Photonics, 2, 719-744, (2015).
[2] M. Shim, and P. Guyot-Sionnest, “Permanent Dipole Moment and Charges in Colloidal Semiconductor Quantum Dots”, Journal of Chemical Physics, 111, 6955-6964, (1999).
[3] E. Fanizza, C. Urso, R. M. Iacobazzi, N. Depalo, M. Corricelli, A. Panniello, A. Agostiano, N. Denora, V. Laquintana, M. Striccoli, and M. L. Curri, “Fabrication of Photoactive Heterostructures Based on Quantum Dots Decorated with Au Nanoparticles”, Science and Technology of Advanced Materials, 17, 98-108, (2016).
[4] C. -C. Lai, C. -Y. Lo, D. H. Nguyen, J. -Z. Huang, W. -S. Tsai, and Y. -R. Ma, “Atomically Smooth Hybrid Crystalline-Core Glass-Clad Fibers for Low-Loss Broadband Wave Guiding”, Optics Express, 24, 20089-20106, (2016).
[5] C. -C. Lai, C. -Y. Lo, T. -H. Hsieh, W. -S. Tsai, D. H. Nguyen, and Y. -R. Ma, “Ligand-Driven and Full-Color-Tunable Fiber Source: Toward Next-Generation Clinic Fiber-Endoscope Tomography with Cellular Resolution”, ACS Omega, 1, 552-565, (2016).
[6] C. -C. Lai, N. -C. Cheng, C. -K. Wang, J. -W. Tjiu, M. -Y. Lin, and S. -Y. Huang, “Simple and Efficient Defect-Tailored Fiber-Based UV-VIS Broadband White Light Generation”, Optics Express, 21, 14606, (2013).
[7] H. Kim, K. -S. Cho, H. Jeong, J. Kim, C. -W. Lee, W. -k. Koh, Y. -G. Roh, S. W. Hwang, and Y. Park, “Single-Mode Lasing from a Monolithic Microcavity with Few-Monolayer-Thick Quantum Dot Films”, ACS Photonics, 3, 1536-1541, (2016).
[8] X. Yang, and B. Li, “Laser Emission from Ring Resonators Formed by a Quantum-Dot-Doped Single Polymer Nanowire”, ACS Macro Letter, 3, 1266-1270, (2014).
[9] Y. Kelestemur, A. F. Cihan, B. Guzelturk, and H. V. Demir, “Type-Tunable Amplified Spontaneous Emission from Core-Seeded CdSe/CdS Nanorods Controlled by Exciton–Exciton Interaction”, Nanoscale, 6, 8509-8514, (2014).
[10] C. Liao, R. Xu, Y. Xu, C. Zhang, M. Xiao, L. Zhang, C. Lu, Y. Cui, and J. Zhang, “Ultralow-Threshold Single-Mode Lasing from Phase-Pure CdSe/CdS Core/Shell Quantum Dots”, Journal of Physical Chemistry, 7, 4968-4976, (2016).
[11] C. Gollner, J. Ziegler, L. Protesescu, D. N. Dirin, R. T. Lechner, G. Fritz-Popovski, M. Sytnyk, S. Yakunin, S. Rotter, A. A. Y. Amin, C. Vidal, C. Hrelescu, T. A. Klar, M. V. Kovalenko, and W. Hwiss, “Random Lasing with Systematic Threshold Behavior in Films of CdSe/CdS Core/Thick-Shell Colloidal Quantum Dots”, ACS Nano, 9, 9792-9801, (2015)
[12] Y. Chen, J. Herrnsdorf, B. Guilhabert, Y. Zhang, I. M. Watson, E. Gu, N. Laurand, and M. D. Dawson, “Colloidal Quantum Dot Random Laser”, Optics Express, 19, 2996, (2011).
[13] Y. Chan, P. T. Snee, J. -M. Caruge, B. K. Yen, G. P. Nair, D. G. Nocera, and M. G. Bawendi, “A Solvent-Stable Nanocrystal-Silica Composite Laser”, Jounal of the American Chemical Society, 128, 3146-3147, (2006).
[14] G. Manfredi, P. Lova, F. Di Stasio, P. Rastogi, R. Krahne, and D. Comoretto, “Lasing from Dot-In-Rod Nanocrystals in Planar Polymer Microcavities”, RCS Advances, 8, 13026-13033, (2018).
[15] C. Dang, J. Lee, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Red, Green and Blue Lasing Enabled by Single-Exciton Gain in Colloidal Quantum Dot Films”, Nature Nanotechnology, 7, 335-339, (2012).
[16] M. Li, M. Zhi, H. Zhu, W. -Y. Wu, Q. -H. Xu, M. H. Jhon, and Y. Chan, “Ultralow-Threshold Multiphoton-Pumped Lasing from Colloidal Nanoplatelets in Solution”, Nature Communications, 6, 8513, (2015).
[17] P. Kolchin, N. Pholchai, M. H. Mikkelsen, J. Oh, S. Ota, M. S. Islam, X. Yin, and X. Zhang, “High Purcell Factor Due to Coupling of a Single Emitter to a Dielectric Slot Waveguide”, Nano Letters, 15, 464-468, (2014).
[18] V. H. Iyer, R. Mahadevu, and A. Pandey, “Low Threshold Quantum Dot Lasers”, Journal of Physical Chemistry, 7, 1244-1248, (2016).
[19] D. V. O'Connor, and D. Phillips, “Time-Correlated Single Photon Counting”, London; Orlando: Academic Press, (1984).
[20] D. S. Dovzhenko, I. L. Martynov, P. S. Samokhvalov, I. S. Eremin, G. E. Kotkovskii, I. P. Sipailo, A. A. Chistyakov, “Photoluminescence of CdSe/ZnS Quantum Dots in a Porous Silicon Microcavity”, Nanophotonics V, 9126, 912630, (2014).
[21] Y. Wang, X. Li, J. Song, L. Xiao, H. Zeng, and H. Sun, “All-Inorganic Colloidal Perovskite Quantum Dots: A New Class of Lasing Materials with Favorable Characteristics”, Advanced Materials, 27, 7101-7108, (2015).
[22] U. Pal, D. Samanta, S. Ghorai, B. K. Samantaray, and A. K. Chaudhuri, “Structural Characterization of Cadmium Selenide Thin Films by X-ray Diffraction and Electron Microscopy”, Journal of Physics D: Applied Physics, 25, 1488-1494, (1992).
[23] L. M. Maestro, E. M. Rodríguez, F. S. Rodríguez, M. C. I. la Cruz, A. Juarranz, R. Naccache, F. Vetrone, D. Jaque, J. A. Capobianco, and J. G. Solé, “CdSe Quantum Dots for Two-Photon Fluorescence Thermal Imaging”, Nano Letters, 10, 5109-5115, (2010).
[24] S. Christodoulou, G. Vaccaro, V. Pinchetti, F. De Donato, J. Q. Grim, A. Casu, A. Genovese, G. Vicidomini, A. Diaspro, S. Brovelli, L. Manna and I. Moreels, “Synthesis of Highly Luminescent Wurtzite CdSe/CdS Giant-Shell Nanocrystals Using a Fast Continuous Injection Route”, Journal of Materials Chemistry C, 2, 3439, (2014).
[25] C. Galland, Y. Ghosh, A. Steinbrück, J. A. Hollingsworth, H. Htoon, and V. I. Klimov, “Lifetime Blinking in Nonblinking Nanocrystal Quantum Dots”, Nature Communications, 3, 908, (2012).
[26] S. A. Ivanov, and M. Achermann, “Spectral and Dynamic Properties of Excitons and Biexcitons in Type-II Semiconductor Nanocrystals”, ACS Nano, 4, 5994-6000, (2010).
[27] Y. Wang, K. S. Leck, V. D. Ta, R. Chen, V. Nalla, Y. Gao, T. He, H. V. Demir, and H. Sun, “Blue Liquid Lasers from Solution of CdZnS/ZnS Ternary Alloy Quantum Dots with Quasi‐Continuous Pumping”, Advanced Matericals, 27, 169-175, (2014).
[28] X. Hou, J. Kang, H. Qin, X. Chen, J. Ma, J. Zhou, L. Chen, L. Wang, L. -W. Wang, and X. Peng, “Engineering Auger Recombination in Colloidal Quantum Dots Via Dielectric Screening”, Nature Communications, 10, 1750, (2019).
[29] C. Dang, and A. Nurmikko, “Beyond Quantum Dot LEDs: Optical Gain and Laser Action in Red, Green, and Blue Colors”, MRS Bulletin, 38, 737-742, (2013).
[30] W. Xie, T. Stöferle, G. Rainò, T. Aubert, S. Bisschop, Y. Zhu, R. F. Mahrt, P. Geiregat, E. Brainis, Z. Hens, and D. V. Thourhout, “On‐Chip Integrated Quantum‐Dot–Silicon‐Nitride Microdisk Lasers”, Advanced Materials, 29, 1604866, (2017).
[31] J. Seo, R. Fudala, W. -J. Kim, R. Rich, B. Tabibi, H. Cho, Z. Gryczynski, I. Gryczynski, and W. Yu, “Hybrid Optical Materials of Plasmon-Coupled CdSe/ZnS Core/Shells for Photonic Applications”, Optical Materials Express, 2, 1026, (2012).
[32] C. -C. Lai, C. -P. Ke, C. -N. Tsai, C. -Y. Lo, R. -C. Shr, and M. -H. Chen, “Near-Field Lasing Dynamics of a Crystal-Glass Core–Shell Hybrid Fiber”, The Journal of Physical Chemistry C, 117, 17725-17730, (2013).
[33] H. Shen, H. Wang, Z. Tang, J. Z. Niu, S. Lou, Z. Dua, and L. S. Li, “High Quality Synthesis of Monodisperse Zinc-Blende CdSe and CdSe/ZnS Nanocrystals with a Phosphine-Free Method”, CrystEngComm, 11, 1733, (2009).
[34] J. Pan, S. P. Sarmah, B. Murali, I. Dursun, W. Peng, M. R. Parida, J. Liu, L. Sinatra, N. Alyami, C. Zhao, E. Alarousu, T. K. Ng, B. S. Ooi, O. M. Bakr, and O. F. Mohammed, “Air-Stable Surface-Passivated Perovskite Quantum Dots for Ultra-Robust, Single- and Two-Photon-Induced Amplified Spontaneous Emission”, The Joural of Physical Chemistry Letters, 6, 5027-5033, (2015)
[35] F. Fan, O. Voznyy, R. P. Sabatini, K. T. Bicanic, M. M. Adachi, J. R. McBride, K. R. Reid, Y. -S. Park, X. Li, A. Jain, Q. -B. Rafael, M. Saravanapavanantham, M. Liu, M. Korkusinski, P. Hawrylak, V. I. Klimov, S. J. Rosenthal, S. Hoogland, and E. H. Sargent, “Continuous-Wave Lasing in Colloidal Quantum Dot Solids Enabled by Facet-Selective Epitaxy”, Nature, 554, 75-79, (2017).
[36] H. Cheng, A. E. Mironov, J. H. Ni, H. J. Yang, W. W. Chen, Z. Dai, P. D. Dragic, J. Dong, S. -J. Park, and J. G. Eden, “Coupling Quantum Dots to Optical Fiber: Low Pump Threshold Laser in the Red with a Near Top Hat Beam Profile”, Applied Physics Letters, 106, 081106, (2015).
[37] C. R. Kagan, C. B. Murray, M. Nirmal, and M. G. Bawendi, “Electronic Energy Transfer in CdSe Quantum Dot Solids”, Physical Review Letters, 76, 3043, (1996).
[38] Y. Fu, D. Kim, W. Jiang, W. Yin, T. K. Ahn and H. Chae, “Excellent Stability of Thicker Shell CdSe@ZnS/ZnS Quantum Dots”, RCS Advances, 7, 40866-40872, (2017).
[39] Y. Zhai, Q. Wang, Z. Qi, C. Li, J. Xia, and X. Li, “Experimental Investigation of Energy Transfer between CdSe/ZnS Quantum Dots and Different-Sized Gold Nanoparticles”, Physical E: Low-Dimensional Systems and Nanostructures, 88, 109-114, (2017).
[40] G. Kaur, H. Kaur, and S. K. Tripathi, “Fluorescence Relaxation Dynamics of CdSe and CdSe/CdS Core/Shell Quantum Dots”, AIP Conference Proceedings, 1591, 420, (2014).
[41] M. Zhao, S. Ye, X. Peng, J. Song, and J. Qu, “Green Emitted CdSe@ZnS Quantum Dots for FLIM and STED Imaging Applications”, Journal of Innovative Optical Health Sciences, 12, 1940003, (2019).
[42] S. F. Wuister, C. de Mello Donegá, and A. Meijerink, “Influence of Thiol Capping on the Exciton Luminescence and Decay Kinetics of CdTe and CdSe Quantum Dots”, The Journal of Physical Chemistry B, 108, 17393-17397, (2004).
[43] R. K. Ratnesh, and M. S. Mehata, “Investigation of Biocompatible and Protein Sensitive Highly Luminescent Quantum Dots Nanocrystals of CdSe, CdSe/ZnS and CdSe/CdS”, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 179, 201-210, (2017).
[44] Q. Yuqiu, Z. Liuyang, A. Limin, and W. Hong, “Investigation on Photoluminescence Quenching of CdSe/ZnS Quantum Dots by Organic Charge Transporting Materials”, Materials Science-Poland, 33, 709-713, (2016).
[45] S. Gao, C. Zhang, Y. Liu, H. Su, L. Wei, T. Huang, N. Dellas, S. Shang, S. E. Mohney, J. Wang, and J. Xu, “Lasing from Colloidal InP/ZnS Quantum Dots”, Optics Express, 19, 5528, (2011).
[46] F. Nan, Z. -Q. Cheng, Y. -L. Wang, Q. Zhang, L. Zhou, Z. -J. Yang, Y. -T. Zhong, S. Liang, Q. Xiong, and Q. -Q. Wang, “Manipulating Nonlinear Emission and Cooperative Effect of CdSe/ZnS Quantum Dots by Coupling to a Silver Nanorod Complex Cavity”, Scientific Reports, 4, 4839, (2015).
[47] B. Guilhabert, C. Foucher, A. -M. Haughey, E. Mutlugun, Y. Gao, J. Herrnsdorf, H. D. Sun, H. V. Demir, M. D. Dawson, and N. Laurand, “Nanosecond Colloidal Quantum Dot Lasers for Sensing”, Optics Express, 22, 7308, (2014).
[48] G. -W. Shu, W. -Z. Lee, I. -J. Shu, J. -L. Shen, J. C. -A. Lin, W. H. Chang, R. -C. Ruaan, and W. C. Chou, “Photoluminescence of Colloidal CdSe/ZnS Quantum Dots Under Oxygen Atmosphere”, IEEE Transactions on Nanotechnology, 4, 632-636, (2005).
[49] I. Suárez, H. Gordillo, R. Abargues, S. Albert, and J. Martínez-Pastor, “Photoluminescence Waveguiding in CdSe and CdTe QDs–PMMA Nanocomposite Films”, Nanotechnology, 22, 435202, (2011).
[50] H. Song, and S. Lee, “Photoluminescent (CdSe)ZnS Quantum Dot-Polymethylmethacrylate Polymer Composite Thin Films in the Visible Spectral Range”, Nanotechnology, 18, 055402, (2007).
[51] M. Anni, “Polymer-II-VI Nanocrystals Blends: Basic Physics and Device Applications to Lasers and LEDs”, Nanomaterials, 9, 1036, (2019).
[52] T. Torchynska, and Y. Vorobiev, “Semiconductor II-VI Quantum Dots with Interface States and Their Biomedical Applications”, Advanced Biomedical Engineering, Dr.Gaetano Gargiulo (Ed.), (2011).
[53] W. -S. Chae, T. D. T. Ung, and Q. L. Nguyen, “Time-Resolved Photoluminescence and Photostability of Single Semiconductor Quantum Dots”, Advances in Natural Sciences: Nanoscience and Nanotechnology, 4, 045009, (2013).
[54] B. Min, S. Kim, K. Okamoto, L. Yang, A. Scherer, H. Atwater, and K. Vahala, “Ultralow Threshold On-Chip Microcavity Nanocrystal Quantum Dot Lasers”, Applied Physics Letters, 89, 191124, (2006).
[55] G. Xing, Y. Liao, X. Wu, S. Chakrabortty, X. Liu, E. K. L. Yeow, Y. Chan, and T. C. Sum, “Ultralow-Threshold Two-Photon Pumped Amplified Spontaneous Emission and Lasing from Seeded CdSe/CdS Nanorod Heterostructures”, ACS Nano, 6, 10835-10844, (2012).
[56] A. Joshi, K. Y. Narsingi, M. O. Manasreh, E. A. Davis, and B. D. Weaver, “Temperature Dependence of the Band Gap of Colloidal CdSe/ZnS Core/Shell Nanocrystals Embedded into an Ultraviolet Curable Resin”, Applied Physics letters, 89, 131907, (2006).
[57] Y. C. Wang, C. T. Yuan, M. Y. Kuo, M. C. Wu, Jau Tang, and M. H. Shih, “Enhancement of the Purcell Effect for Colloidal CdSe/ZnS Quantum Dots Coupled to Silver Nanowires by a Metallic Tip”, Applied Physics Letters, 100, 253110, (2012).
[58] A. Gadalla, M. S. Abd El-Sadek, and R. Hamood, “Characterization of CdSe Core and CdSe/ZnS Core/Shell Quantum Dots Synthesized Using a Modified Method”, Chalcogenide Letters, 14, 239-249, (2017).
[59] B. Guilhabert, J. Herrnsdorf, Y. Gao, E. Mutlugun, H. V. Demir, N. Laurand, and M. D. Dawson, “CdSe/ZnS Colloidal Quantum Dots for Solution-Processed DFB Lasers”, 2013 IEEE Photonics Conference, (2013).
[60] N. Zhang, H. Liu, A. M. Stolyarov, Y. Fink, X. Sun, and L. Wei, “Quantum Dots Fiber Laser with Azimuthally Polarized Radial Emission”, 2016 Conference on Lasers and Electro-Optics (CLEO), (2016).
[61] H. Xu, V. Chmyrov, J. Widengren, H. Brismar, and Y. Fu, “Mechanisms of Fluorescence Decays of Colloidal CdSe–CdS/ZnS Quantum Dots Unraveled by Time-Resolved Fluorescence Measurement”, Physical Chemistry Chemical Physics, 17, 27588-27595, (2015).
[62] S. Chinnathambi, N. Abu, and N. Hanagata, “Biocompatible CdSe/ZnS Quantum Dot Micelles for Long-Term Cell Imaging without Alteration to the Native Structure of the Blood Plasma Protein Human Serum Albumin”, RSC Advances, 7, 2392-2402, (2017).
[63] F. Liao, J. Yu, Z. Gu, Z. Yang, T. Hasan, S. Linghu, J. Peng, W. Fang, S. Zhuang, M. Gu, and F. Gu, “Enhancing Monolayer Photoluminescence on Optical Micro/Nanofibers for Low-Threshold Lasing”, Science Advances, 5, 7398, (2019).
[64] B. C. Fitzmorris, J. K. Cooper, J. Edberg, S. Gul, J. Guo, and J. Z. Zhang, “Synthesis and Structural, Optical, and Dynamic Properties of Core/Shell/Shell CdSe/ZnSe/ZnS Quantum Dots”, The Journal of Physical Chemistry C, 116, 25065-25073, (2012).
[65] D. U. Lee, D. H. Kim, D. H. Choi, S. W. Kim, H. S. Lee, K. -H. Yoo, and T. W. Kim, “Microstructural and Optical Properties of CdSe/CdS/ZnS Core-Shell-Shell Quantum Dots”, Optics Express, 24, A350, (2016).
[66] A. Ray, S. Bhattacharya, and AjoyBauri, “Exhibition of Förster Resonance Energy Transfer from CdSeZnS Quantum Dots to Zinc Porphyrazine Studied in Solution”, Journal of Molecular Liquids, 276, 770-778, (2019).
[67] Y. -C. Wang, C. -T. Yuan, Y. -C. Yang, M. -C. Wu, J. Tang, and M. -H. Shih, “High Efficiency Silicon Nanodisk Laser Based on Colloidal CdSe/ZnS QDs”, Nano Reviews, 2, 7275, (2011).
[68] Y. ‐C. Yao, Z. ‐P. Yang, J. ‐M. Hwang, H. ‐C. Su, J. ‐Y. Haung, T. ‐N. Lin, J. ‐L. Shen, M. ‐H. Lee, M. ‐T. Tsai, and Y. ‐J. Lee, “Coherent and Polarized Random Laser Emissions from Colloidal CdSe/ZnS Quantum Dots Plasmonically Coupled to Ellipsoidal Ag Nanoparticles”, Advanced Optical Matericals, 5, 1600746, (2016).
[69] J. Sun, M. Ikezawa, X. Wang, P. Jing, H. Li, J. Zhao, and Y. Masumoto, “Photocarrier Recombination Dynamics in Ternary Chalcogenide CuInS2 Quantum Dots”, Physical Chemistry Physics, 17, 11981-11989, (2015).
[70] I. C. Robin, R. André, A. Balocchi, S. Carayon, S. Moehl, J. M. Gérard, and L. Ferlazzo, “Purcell Effect for CdSe/ZnSe Quantum Dots Placed into Hybrid Micropillars”, Applied Physics Letters, 87, 233114, (2005).
[71] Z. Di, H. V. Jones, P. R. Dolan, S. M. Fairclough, M. B. Wincott, J. Fill, G. M. Hughes, and J. M. Smith, “Controlling the Emission from Semiconductor Quantum Dots using Ultra-Small Tunable Optical Microcavities”, New Journal of Physics, 14, 103048, (2012).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔