|
1Harman, G. E. Overview of Mechanisms and Uses of Trichoderma spp. Phytopathology 96, 190-194, doi:10.1094/PHYTO-96-0190 (2006). 2Mukherjee, P. K., Horwitz, B. A., Herrera-Estrella, A., Schmoll, M. & Kenerley, C. M. Trichoderma research in the genome era. Annu Rev Phytopathol 51, 105-129, doi:10.1146/annurev-phyto-082712-102353 (2013). 3Druzhinina, I. S. & Kubicek, C. P. Familiar Stranger: Ecological Genomics of the Model Saprotroph and Industrial Enzyme Producer Trichoderma reesei Breaks the Stereotypes. Advances in applied microbiology 95, 69-147, doi:10.1016/bs.aambs.2016.02.001 (2016). 4Schmoll, M. et al. The Genomes of Three Uneven Siblings: Footprints of the Lifestyles of Three Trichoderma Species. Microbiol Mol Biol Rev 80, 205-327, doi:10.1128/MMBR.00040-15 (2016). 5Szabo, M., Csepregi, K., Galber, M., Viranyi, F. & Fekete, C. Control plant-parasitic nematodes with Trichoderma species and nematode-trapping fungi: The role of chi18-5 and chi18-12 genes in nematode egg-parasitism. Biological Control 63, 121-128, doi:https://doi.org/10.1016/j.biocontrol.2012.06.013 (2012). 6Lo Presti, L. et al. Fungal effectors and plant susceptibility. Annu Rev Plant Biol 66, 513-545, doi:10.1146/annurev-arplant-043014-114623 (2015). 7Zhang, S. et al. Mechanisms and Characterization of Trichoderma longibrachiatum T6 in Suppressing Nematodes (Heterodera avenae) in Wheat. Front Plant Sci 8, 1491, doi:10.3389/fpls.2017.01491 (2017). 8Druzhinina, I. S. et al. Massive lateral transfer of genes encoding plant cell wall-degrading enzymes to the mycoparasitic fungus Trichoderma from its plant-associated hosts. PLoS Genet 14, e1007322, doi:10.1371/journal.pgen.1007322 (2018). 9Guzman-Guzman, P., Porras-Troncoso, M. D., Olmedo-Monfil, V. & Herrera-Estrella, A. Trichoderma Species: Versatile Plant Symbionts. Phytopathology 109, 6-16, doi:10.1094/PHYTO-07-18-0218-RVW (2019). 10Ramirez-Valdespino, C. A., Casas-Flores, S. & Olmedo-Monfil, V. Trichoderma as a Model to Study Effector-Like Molecules. Front Microbiol 10, 1030, doi:10.3389/fmicb.2019.01030 (2019). 11Topalovic, O., Hussain, M. & Heuer, H. Plants and Associated Soil Microbiota Cooperatively Suppress Plant-Parasitic Nematodes. Front Microbiol 11, 313, doi:10.3389/fmicb.2020.00313 (2020). 12 Bissett, J. A revision of the genus Trichoderma. II. Infrageneric classification. Canadian J. Botany 69, 2357-2372, doi:10.1139/b91-297 (1991). 13Druzhinina, I. S. et al. An oligonucleotide barcode for species identification in Trichoderma and Hypocrea. Fungal Genet Biol 42, 813-828, doi:10.1016/j.fgb.2005.06.007 (2005). 14Montenecourt, B. S. & Eveleigh, D. E. Preparation of mutants of Trichoderma reesei with enhanced cellulase production. Appl Environ Microbiol 34, 777-782 (1977). 15Harman, G. E., Howell, C. R., Viterbo, A., Chet, I. & Lorito, M. Trichoderma species--opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2, 43-56, doi:10.1038/nrmicro797 (2004). 16Masunaka, A., Hyakumachi, M. & Takenaka, S. Plant growth-promoting fungus, Trichoderma koningi suppresses isoflavonoid phytoalexin vestitol production for colonization on/in the roots of Lotus japonicus. Microbes Environ 26, 128-134, doi:10.1264/jsme2.me10176 (2011). 17Peterson, R. & Nevalainen, H. Trichoderma reesei RUT-C30--thirty years of strain improvement. Microbiology 158, 58-68, doi:mic.0.054031-0 [pii] 10.1099/mic.0.054031-0 (2012). 18Seidl, V., Seibel, C., Kubicek, C. P. & Schmoll, M. Sexual development in the industrial workhorse Trichoderma reesei. Proceedings of the National Academy of Sciences of the United States of America 106, 13909-13914, doi:10.1073/pnas.0904936106 (2009). 19Linke, R. et al. Restoration of female fertility in Trichoderma reesei QM6a provides the basis for inbreeding in this industrial cellulase producing fungus. Biotechnol Biofuels 8, 155, doi:10.1186/s13068-015-0311-2 (2015). 20Jonkers, W. et al. HAM-5 functions as a MAP kinase scaffold during cell fusion in Neurospora crassa. PLoS Genet 10, e1004783, doi:10.1371/journal.pgen.1004783 (2014). 21Jamet-Vierny, C., Contamine, V., Boulay, J., Zickler, D. & Picard, M. Mutations in genes encoding the mitochondrial outer membrane proteins Tom70 and Mdm10 of Podospora anserina modify the spectrum of mitochondrial DNA rearrangements associated with cellular death. Mol Cell Biol 17, 6359-6366 (1997). 22Chen, C. L. et al. Blue light acts as a double-edged sword in regulating sexual development of Hypocrea jecorina (Trichoderma reesei). PloS one 7, e44969, doi:10.1371/journal.pone.0044969 (2012). 23Dattenbock, C. et al. Gene regulation associated with sexual development and female fertility in different isolates of Trichoderma reesei. Fungal Biol Biotechnol 5, 9, doi:10.1186/s40694-018-0055-4 (2018). 24Li, W.-C., Chuang, Y.-C., Chen, C.-L. & Wang, T.-F. in Gene Expression Systems in Fungi: Advancements and Applications (eds Monika Schmoll & Christoph Dattenböck) 351-359 (Springer International Publishing, 2016). 25Li, W. C. et al. Trichoderma reesei complete genome sequence, repeat-induced point mutation, and partitioning of CAZyme gene clusters. Biotechnology for biofuels 10, 170, doi:10.1186/s13068-017-0825-x (2017). 26Li, W. C. et al. (BioRxiv, 2019). 27Li, W. C., Chen, C. L. & Wang, T. F. Repeat-induced point (RIP) mutation in the industrial workhorse fungus Trichoderma reesei. Applied microbiology and biotechnology 102, 1567-1574, doi:10.1007/s00253-017-8731-5 (2018). 28Su, G. C. et al. Role of the RAD51-SWI5-SFR1 Ensemble in homologous recombination. Nucleic Acids Res 44, 6242-6251, doi:10.1093/nar/gkw375 (2016). 29Kubicek, C. P. et al. Evolution and comparative genomics of the most common Trichoderma species. BMC Genomics 20, 485, doi:10.1186/s12864-019-5680-7 (2019). 30Kubicek, C. P. et al. Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma. Genome Biol 12, R40, doi:10.1186/gb-2011-12-4-r40 (2011). 31Atanasova, L., Knox, B. P., Kubicek, C. P., Druzhinina, I. S. & Baker, S. E. The polyketide synthase gene pks4 of Trichoderma reesei provides pigmentation and stress resistance. Eukaryotic cell 12, 1499-1508, doi:10.1128/EC.00103-13 (2013). 32Atanasova, L. et al. Comparative transcriptomics reveals different strategies of Trichoderma mycoparasitism. BMC genomics 14, 121, doi:10.1186/1471-2164-14-121 (2013). 33Rhoads, A. & Au, K. F. PacBio Sequencing and Its Applications. Genomics Proteomics Bioinformatics 13, 278-289, doi:10.1016/j.gpb.2015.08.002 (2015). 34Aramayo, R. & Selker, E. U. Neurospora crassa, a model system for epigenetics research. Cold Spring Harb Perspect Biol 5, a017921, doi:10.1101/cshperspect.a017921 (2013). 35Gladyshev, E. Repeat-Induced Point Mutation and Other Genome Defense Mechanisms in Fungi. Microbiol Spectr 5, doi:10.1128/microbiolspec.FUNK-0042-2017 (2017). 36Martinez, D. et al. Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nature biotechnology 26, 553-560, doi:10.1038/nbt1403 (2008). 37Koike, H., Aerts, A., LaButti, K., Grigoriev, I. V. & Baker, S. E. Comparative Genomics Analysis of Trichoderma reesei Strains. Industrial Biotechnology 9, 352-367, doi:10.1089/ind.2013.0015 (2013). 38Marie-Nelly, H. et al. High-quality genome (re)assembly using chromosomal contact data. Nat Commun 5, 5695, doi:10.1038/ncomms6695 (2014). 39Jourdier, E. et al. Proximity ligation scaffolding and comparison of two Trichoderma reesei strains genomes. Biotechnology for biofuels 10, 151, doi:10.1186/s13068-017-0837-6 (2017). 40Li, W. C. & Wang, T. F. PacBio long-read sequencing, assembly and Funannotate reannotation of the complete genome of Trichoderma reesei QM6a. Methods Mol Biol, in press (2020). 41Palmer, J. Funannotate: Fungal genome annotation scripts., <https://github.com/nextgenusfs/funannotate> (2017). 42Keeney, S., Giroux, C. N. & Kleckner, N. Meiosis-specific DNA double-strand breaks are catalyzed by Spo11, a member of a widely conserved protein family. Cell 88, 375-384 (1997). 43Lam, I. & Keeney, S. Mechanism and regulation of meiotic recombination initiation. Cold Spring Harb Perspect Biol 7, a016634, doi:10.1101/cshperspect.a016634 (2014). 44Moses, M. J. Synaptonemal Complex. Ann Rev Genetics 2, 363-412, doi:10.1146/annurev.ge.02.120168.002051 (1968). 45Zickler, D. & Kleckner, N. Meiotic chromosomes: integrating structure and function. Annu Rev Genet 33, 603-754 (1999). 46Kuo, H. C., Wang, T. Y., Chen, P. P., Chen, R. S. & Chen, T. Y. Genome sequence of Trichoderma virens FT-333 from tropical marine climate. FEMS Microbiol Lett 362, doi:10.1093/femsle/fnv036 (2015). 47Dennis, C. & Webster, J. Antagonistic properties of species-groups of Trichoderma Trans. Br. Mycol. Soc. 57, 25-39 (1971). 48Krzywinski, M. et al. Circos: an information aesthetic for comparative genomics. Genome Res 19, 1639-1645, doi:10.1101/gr.092759.109 (2009). 49Cabanettes, F. & Klopp, C. D-GENIES: dot plot large genomes in an interactive, efficient and simple way. PeerJ 6, e4958, doi:10.7717/peerj.4958 (2018). 50Petersen, T. N., Brunak, S., von Heijne, G. & Nielsen, H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8, 785-786, doi:10.1038/nmeth.1701 (2011). 51Krogh, A., Larsson, B., von Heijne, G. & Sonnhammer, E. L. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305, 567-580, doi:10.1006/jmbi.2000.4315 (2001). 52Eisenhaber, B., Schneider, G., Wildpaner, M. & Eisenhaber, F. A sensitive predictor for potential GPI lipid modification sites in fungal protein sequences and its application to genome-wide studies for Aspergillus nidulans, Candida albicans, Neurospora crassa, Saccharomyces cerevisiae and Schizosaccharomyces pombe. J Mol Biol 337, 243-253, doi:10.1016/j.jmb.2004.01.025 (2004). 53Chambergo, F. S. et al. Elucidation of the metabolic fate of glucose in the filamentous fungus Trichoderma reesei using expressed sequence tag (EST) analysis and cDNA microarrays. The Journal of biological chemistry 277, 13983-13988, doi:10.1074/jbc.M107651200 (2002). 54Simao, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210-3212, doi:10.1093/bioinformatics/btv351 (2015). 55Seppey, M., Manni, M. & Zdobnov, E. M. BUSCO: Assessing Genome Assembly and Annotation Completeness. Methods Mol Biol 1962, 227-245, doi:10.1007/978-1-4939-9173-0_14 (2019). 56Kriventseva, E. V. et al. OrthoDB v10: sampling the diversity of animal, plant, fungal, protist, bacterial and viral genomes for evolutionary and functional annotations of orthologs. Nucleic Acids Res 47, D807-D811, doi:10.1093/nar/gky1053 (2019). 57Chuang, Y. C. et al. Trichoderma reesei meiosis generates segmentally aneuploid progeny with higher xylanase-producing capability. Biotechnol Biofuels 8, 30, doi:10.1186/s13068-015-0202-6 (2015). 58Borkovich, K. A. et al. Lessons from the genome sequence of Neurospora crassa: tracing the path from genomic blueprint to multicellular organism. Microbiology and molecular biology reviews : MMBR 68, 1-108 (2004). 59Kim, J. M., Vanguri, S., Boeke, J. D., Gabriel, A. & Voytas, D. F. Transposable elements and genome organization: a comprehensive survey of retrotransposons revealed by the complete Saccharomyces cerevisiae genome sequence. Genome research 8, 464-478 (1998). 60Jordan, I. K. & McDonald, J. F. Comparative genomics and evolutionary dynamics of Saccharomyces cerevisiae Ty elements. Genetica 107, 3-13 (1999). 61Dhillon, B., Gill, N., Hamelin, R. C. & Goodwin, S. B. The landscape of transposable elements in the finished genome of the fungal wheat pathogen Mycosphaerella graminicola. BMC genomics 15, 1132, doi:10.1186/1471-2164-15-1132 (2014). 62Bowen, N. J., Jordan, I. K., Epstein, J. A., Wood, V. & Levin, H. L. Retrotransposons and their recognition of pol II promoters: a comprehensive survey of the transposable elements from the complete genome sequence of Schizosaccharomyces pombe. Genome research 13, 1984-1997, doi:10.1101/gr.1191603 (2003). 63Goodwin, T. J. & Poulter, R. T. The diversity of retrotransposons in the yeast Cryptococcus neoformans. Yeast 18, 865-880, doi:10.1002/yea.733 (2001). 64Abrahao-Neto, J. et al. Mitochondrial functions mediate cellulase gene expression in Trichoderma reesei. Biochemistry 34, 10456-10462, doi:10.1021/bi00033a018 (1995). 65Derntl, C. et al. In Vivo Study of the Sorbicillinoid Gene Cluster in Trichoderma reesei. Front Microbiol 8, 2037, doi:10.3389/fmicb.2017.02037 (2017). 66Derntl, C., Rassinger, A., Srebotnik, E., Mach, R. L. & Mach-Aigner, A. R. Identification of the Main Regulator Responsible for Synthesis of the Typical Yellow Pigment Produced by Trichoderma reesei. Appl Environ Microbiol 82, 6247-6257, doi:10.1128/AEM.01408-16 (2016). 67Monroy, A. A., Stappler, E., Schuster, A., Sulyok, M. & Schmoll, M. A CRE1- regulated cluster is responsible for light dependent production of dihydrotrichotetronin in Trichoderma reesei. PLoS One 12, e0182530, doi:10.1371/journal.pone.0182530 (2017). 68Nakagawa, T. & Ogawa, H. The Saccharomyces cerevisiae MER3 gene, encoding a novel helicase-like protein, is required for crossover control in meiosis. EMBO J 18, 5714-5723, doi:10.1093/emboj/18.20.5714 (1999). 69Nakagawa, T., Flores-Rozas, H. & Kolodner, R. D. The MER3 helicase involved in meiotic crossing over is stimulated by single-stranded DNA-binding proteins and unwinds DNA in the 3' to 5' direction. J Biol Chem 276, 31487-31493, doi:10.1074/jbc.M104003200 (2001). 70Storlazzi, A. et al. Recombination proteins mediate meiotic spatial chromosome organization and pairing. Cell 141, 94-106, doi:S0092-8674(10)00194-7 [pii] 10.1016/j.cell.2010.02.041 (2010). 71Espagne, E. et al. Sme4 coiled-coil protein mediates synaptonemal complex assembly, recombinosome relocalization, and spindle pole body morphogenesis. Proceedings of the National Academy of Sciences of the United States of America 108, 10614-10619, doi:10.1073/pnas.1107272108 (2011). 72Craven, R. J., Greenwell, P. W., Dominska, M. & Petes, T. D. Regulation of genome stability by TEL1 and MEC1, yeast homologs of the mammalian ATM and ATR genes. Genetics 161, 493-507 (2002). 73Carballo, J. A., Johnson, A. L., Sedgwick, S. G. & Cha, R. S. Phosphorylation of the axial element protein Hop1 by Mec1/Tel1 ensures meiotic interhomolog recombination. Cell 132, 758-770, doi:10.1016/j.cell.2008.01.035 (2008). 74Chuang, C. N., Cheng, Y. H. & Wang, T. F. Mek1 stabilizes Hop1-Thr318 phosphorylation to promote interhomolog recombination and checkpoint responses during yeast meiosis. Nucleic Acids Res 40, 11416-11427, doi:10.1093/nar/gks920 (2012). 75Herruzo, E. et al. The Pch2 AAA+ ATPase promotes phosphorylation of the Hop1 meiotic checkpoint adaptor in response to synaptonemal complex defects. Nucleic Acids Res 44, 7722-7741, doi:10.1093/nar/gkw506 (2016). 76Tsubouchi, H. & Roeder, G. S. Budding yeast Hed1 down-regulates the mitotic recombination machinery when meiotic recombination is impaired. Genes Dev 20, 1766-1775 (2006). 77Busygina, V. et al. Hed1 regulates Rad51-mediated recombination via a novel mechanism. Genes Dev 22, 786-795 (2008). 78Niu, H. et al. Regulation of meiotic recombination via Mek1-mediated Rad54 phosphorylation. Mol Cell 36, 393-404, doi:10.1016/j.molcel.2009.09.029 (2009). 79Callender, T. L. et al. Mek1 Down Regulates Rad51 Activity during Yeast Meiosis by Phosphorylation of Hed1. PLoS genetics 12, e1006226, doi:10.1371/journal.pgen.1006226 (2016). 80Ramesh, M. A., Malik, S. B. & Logsdon, J. M., Jr. A phylogenomic inventory of meiotic genes; evidence for sex in giardia and an early eukaryotic origin of meiosis. Curr Biol 15, 185-191 (2005). 81Yamagata, K. et al. Bloom's and Werner's syndrome genes suppress hyperrecombination in yeast sgs1 mutant: implication for genomic instability in human diseases. Proc Natl Acad Sci U S A 95, 8733-8738 (1998). 82Oh, S. D. et al. BLM ortholog, Sgs1, prevents aberrant crossing-over by suppressing formation of multichromatid joint molecules. Cell 130, 259-272 (2007). 83Oh, S. D., Lao, J. P., Taylor, A. F., Smith, G. R. & Hunter, N. RecQ helicase, Sgs1, and XPF family endonuclease, Mus81-Mms4, resolve aberrant joint molecules during meiotic recombination. Mol Cell 31, 324-336 (2008). 84De Muyt, A. et al. BLM helicase ortholog Sgs1 is a central regulator of meiotic recombination intermediate metabolism. Mol Cell 46, 43-53, doi:10.1016/j.molcel.2012.02.020 (2012). 85Bochman, M. L., Paeschke, K., Chan, A. & Zakian, V. A. Hrq1, a homolog of the human RecQ4 helicase, acts catalytically and structurally to promote genome integrity. Cell Rep 6, 346-356, doi:10.1016/j.celrep.2013.12.037 (2014). 86Cogoni, C. & Macino, G. Posttranscriptional gene silencing in Neurospora by a RecQ DNA helicase. Science 286, 2342-2344, doi:10.1126/science.286.5448.2342 (1999). 87Kato, A. & Inoue, H. Growth defect and mutator phenotypes of RecQ-deficient Neurospora crassa mutants separately result from homologous recombination and nonhomologous end joining during repair of DNA double-strand breaks. Genetics 172, 113-125, doi:10.1534/genetics.105.041756 (2006). 88Schuster, A. & Schmoll, M. Biology and biotechnology of Trichoderma. Applied microbiology and biotechnology 87, 787-799, doi:10.1007/s00253-010-2632-1 (2010). 89Mukherjee, P. K., Horwitz, B. A. & Kenerley, C. M. Secondary metabolism in Trichoderma--a genomic perspective. Microbiology 158, 35-45, doi:10.1099/mic.0.053629-0 (2012). 90Yao, L. et al. Isolation and expression of two polyketide synthase genes from Trichoderma harzianum 88 during mycoparasitism. Braz J Microbiol 47, 468-479, doi:10.1016/j.bjm.2016.01.004 (2016). 91Sperschneider, J., Dodds, P. N., Gardiner, D. M., Singh, K. B. & Taylor, J. M. Improved prediction of fungal effector proteins from secretomes with EffectorP 2.0. Mol Plant Pathol 19, 2094-2110, doi:10.1111/mpp.12682 (2018). 92Feldman, D., Yarden, O. & Hadar, Y. Seeking the Roles for Fungal Small-Secreted Proteins in Affecting Saprophytic Lifestyles. Front Microbiol 11, 455, doi:10.3389/fmicb.2020.00455 (2020). 93Vleeshouwers, V. G. & Oliver, R. P. Effectors as Tools in Disease Resistance Breeding Against Biotrophic, Hemibiotrophic, and Necrotrophic Plant Pathogens. Mol Plant Microbe Interact 2015, 40-50, doi:10.1094/MPMI-10-13-0313-TA.testissue (2015). 94Rovenich, H., Boshoven, J. C. & Thomma, B. P. Filamentous pathogen effector functions: of pathogens, hosts and microbiomes. Curr Opin Plant Biol 20, 96-103, doi:10.1016/j.pbi.2014.05.001 (2014). 95Gout, L. et al. Genome structure impacts molecular evolution at the AvrLm1 avirulence locus of the plant pathogen Leptosphaeria maculans. Environ Microbiol 9, 2978-2992, doi:10.1111/j.1462-2920.2007.01408.x (2007). 96Fudal, I. et al. Repeat-induced point mutation (RIP) as an alternative mechanism of evolution toward virulence in Leptosphaeria maculans. Mol Plant Microbe Interact 22, 932-941, doi:10.1094/MPMI-22-8-0932 (2009). 97Rouxel, T. et al. Effector diversification within compartments of the Leptosphaeria maculans genome affected by Repeat-Induced Point mutations. Nat Commun 2, 202, doi:10.1038/ncomms1189 (2011). 98Oliver, R. Genomic tillage and the harvest of fungal phytopathogens. New Phytol 196, 1015-1023, doi:10.1111/j.1469-8137.2012.04330.x (2012). 99Goll, M. G. & Bestor, T. H. Eukaryotic cytosine methyltransferases. Annu Rev Biochem 74, 481-514, doi:10.1146/annurev.biochem.74.010904.153721 (2005). 100Mahfouz, M. M. RNA-directed DNA methylation: mechanisms and functions. Plant Signal Behav 5, 806-816, doi:10.4161/psb.5.7.11695 (2010). 101Chen, C. C., Wang, K. Y. & Shen, C. K. DNA 5-methylcytosine demethylation activities of the mammalian DNA methyltransferases. J Biol Chem 288, 9084-9091, doi:10.1074/jbc.M112.445585 (2013). 102Wang, K. Y., Chen, C. C. & Shen, C. K. Active DNA demethylation of the vertebrate genomes by DNA methyltransferases: deaminase, dehydroxymethylase or demethylase? Epigenomics 6, 353-363, doi:10.2217/epi.14.21 (2014). 103Galagan, J. E. et al. The genome sequence of the filamentous fungus Neurospora crassa. Nature 422, 859-868, doi:10.1038/nature01554 (2003). 104Kouzminova, E. & Selker, E. U. dim-2 encodes a DNA methyltransferase responsible for all known cytosine methylation in Neurospora. EMBO J 20, 4309-4323, doi:10.1093/emboj/20.15.4309 (2001). 105Freitag, M., Williams, R. L., Kothe, G. O. & Selker, E. U. A cytosine methyltransferase homologue is essential for repeat-induced point mutation in Neurospora crassa. Proceedings of the National Academy of Sciences of the United States of America 99, 8802-8807, doi:10.1073/pnas.132212899 (2002). 106Barry, C., Faugeron, G. & Rossignol, J. L. Methylation induced premeiotically in Ascobolus: coextension with DNA repeat lengths and effect on transcript elongation. Proc Natl Acad Sci U S A 90, 4557-4561 (1993). 107Rossignol, J. L. & Faugeron, G. MIP: an epigenetic gene silencing process in Ascobolus immersus. Curr Top Microbiol Immunol 197, 179-191 (1995). 108Goyon, C. & Faugeron, G. Targeted transformation of Ascobolus immersus and de novo methylation of the resulting duplicated DNA sequences. Mol Cell Biol 9, 2818-2827 (1989). 109Antequera, F., Tamame, M., Villanueva, J. R. & Santos, T. DNA methylation in the fungi. J Biol Chem 259, 8033-8036 (1984). 110Graia, F. et al. Genome quality control: RIP (repeat-induced point mutation) comes to Podospora. Mol Microbiol 40, 586-595 (2001). 111Bouhouche, K., Zickler, D., Debuchy, R. & Arnaise, S. Altering a gene involved in nuclear distribution increases the repeat-induced point mutation process in the fungus Podospora anserina. Genetics 167, 151-159, doi:167/1/151 [pii] (2004). 112Lee, D. W., Freitag, M., Selker, E. U. & Aramayo, R. A cytosine methyltransferase homologue is essential for sexual development in Aspergillus nidulans. PLoS One 3, e2531, doi:10.1371/journal.pone.0002531 (2008). 113Liu, S. Y. et al. Bisulfite sequencing reveals that Aspergillus flavus holds a hollow in DNA methylation. PLoS One 7, e30349, doi:10.1371/journal.pone.0030349 (2012). 114Montiel, M. D., Lee, H. A. & Archer, D. B. Evidence of RIP (repeat-induced point mutation) in transposase sequences of Aspergillus oryzae. Fungal Genet Biol 43, 439-445, doi:10.1016/j.fgb.2006.01.011 (2006). 115Braumann, I., van den Berg, M. & Kempken, F. Repeat induced point mutation in two asexual fungi, Aspergillus niger and Penicillium chrysogenum. Current genetics 53, 287-297, doi:10.1007/s00294-008-0185-y (2008). 116Malagnac, F. et al. A gene essential for de novo methylation and development in Ascobolus reveals a novel type of eukaryotic DNA methyltransferase structure. Cell 91, 281-290, doi:S0092-8674(00)80410-9 [pii] (1997). 117Grognet, P. et al. A RID-like putative cytosine methyltransferase homologue controls sexual development in the fungus Podospora anserina. PLoS Genet 15, e1008086, doi:10.1371/journal.pgen.1008086 (2019). 118Hane, J. K. & Oliver, R. P. RIPCAL: a tool for alignment-based analysis of repeat-induced point mutations in fungal genomic sequences. BMC bioinformatics 9, 478, doi:10.1186/1471-2105-9-478 (2008). 119Hane, J. K. & Oliver, R. P. In silico reversal of repeat-induced point mutation (RIP) identifies the origins of repeat families and uncovers obscured duplicated genes. BMC genomics 11, 655, doi:10.1186/1471-2164-11-655 (2010). 120Watters, M. K., Randall, T. A., Margolin, B. S., Selker, E. U. & Stadler, D. R. Action of repeat-induced point mutation on both strands of a duplex and on tandem duplications of various sizes in Neurospora. Genetics 153, 705-714 (1999). 121Selker, E. U. et al. The methylated component of the Neurospora crassa genome. Nature 422, 893-897, doi:10.1038/nature01564 (2003). 122Guangtao, Z. et al. Gene targeting in a nonhomologous end joining deficient Hypocrea jecorina. Journal of biotechnology 139, 146-151, doi:10.1016/j.jbiotec.2008.10.007 (2009). 123Margolin, B. S. et al. A methylated Neurospora 5S rRNA pseudogene contains a transposable element inactivated by repeat-induced point mutation. Genetics 149, 1787-1797 (1998). 124Shen, J. C., Rideout, W. M., 3rd & Jones, P. A. High frequency mutagenesis by a DNA methyltransferase. Cell 71, 1073-1080, doi:10.1016/s0092-8674(05)80057-1 (1992). 125Yebra, M. J. & Bhagwat, A. S. A cytosine methyltransferase converts 5-methylcytosine in DNA to thymine. Biochemistry 34, 14752-14757, doi:10.1021/bi00045a016 (1995). 126Kleckner, N. Meiosis: how could it work? Proceedings of the National Academy of Sciences of the United States of America 93, 8167-8174 (1996). 127Hunter, N. Meiotic Recombination: The Essence of Heredity. Cold Spring Harb Perspect Biol 7, doi:10.1101/cshperspect.a016618 (2015). 128Brown, M. S. & Bishop, D. K. DNA strand exchange and RecA homologs in meiosis. Cold Spring Harb Perspect Biol 7, a016659, doi:10.1101/cshperspect.a016659 (2014). 129Lao, J. P. et al. Meiotic crossover control by concerted action of Rad51-Dmc1 in homolog template bias and robust homeostatic regulation. PLoS genetics 9, e1003978, doi:10.1371/journal.pgen.1003978 (2013). 130Lee, J. Y. et al. DNA RECOMBINATION. Base triplet stepping by the Rad51/RecA family of recombinases. Science 349, 977-981, doi:10.1126/science.aab2666 (2015). 131Qi, Z. et al. DNA sequence alignment by microhomology sampling during homologous recombination. Cell 160, 856-869, doi:10.1016/j.cell.2015.01.029 (2015). 132Borgogno, M. V. et al. Tolerance of DNA Mismatches in Dmc1 Recombinase-mediated DNA Strand Exchange. J Biol Chem 291, 4928-4938, doi:10.1074/jbc.M115.704718 (2016). 133Lee, J. Y. et al. Sequence imperfections and base triplet recognition by the Rad51/RecA family of recombinases. J Biol Chem 292, 11125-11135, doi:10.1074/jbc.M117.787614 (2017). 134Herrera-Estrella, A., Goldman, G. H., van Montagu, M. & Geremia, R. A. Electrophoretic karyotype and gene assignment to resolved chromosomes of Trichoderma spp. Mol Microbiol 7, 515-521 (1993). 135Marcais, G. et al. MUMmer4: A fast and versatile genome alignment system. PLoS Comput Biol 14, e1005944, doi:10.1371/journal.pcbi.1005944 (2018). 136Anderson, C. M. et al. ReCombine: a suite of programs for detection and analysis of meiotic recombination in whole-genome datasets. PLoS One 6, e25509, doi:10.1371/journal.pone.0025509 (2011). 137Oke, A., Anderson, C. M., Yam, P. & Fung, J. C. Controlling meiotic recombinational repair - specifying the roles of ZMMs, Sgs1 and Mus81/Mms4 in crossover formation. PLoS Genet 10, e1004690, doi:10.1371/journal.pgen.1004690 (2014). 138Lee, C. D. et al. An improved SUMO fusion protein system for effective production of native proteins. Protein Sci 17, 1241-1248 (2008). 139Chen, C. Y., Lin, C. W., Chang, C. Y., Jiang, S. T. & Hsueh, Y. P. Sarm1, a negative regulator of innate immunity, interacts with syndecan-2 and regulates neuronal morphology. J Cell Biol 193, 769-784, doi:10.1083/jcb.201008050 (2011). 140Shigemizu, D. et al. IMSindel: An accurate intermediate-size indel detection tool incorporating de novo assembly and gapped global-local alignment with split read analysis. Sci Rep 8, 5608, doi:10.1038/s41598-018-23978-z (2018). 141Li, W. C., Liu, H. C., Lin, Y. J., Tung, S. Y. & Wang, T. F. Third-generation sequencing-based mapping and visualization of single nucleotide polymorphism, meiotic recombination, illegitimate mutation and repeat-induced point mutation Nucleic Acids Research Genomics and Bioinformatics, in press (2020). 142Seidl, V. et al. The Hypocrea jecorina (Trichoderma reesei) hypercellulolytic mutant RUT C30 lacks a 85 kb (29 gene-encoding) region of the wild-type genome. BMC Genomics 9, 327 (2008). 143Garcia, V., Gray, S., Allison, R. M., Cooper, T. J. & Neale, M. J. Tel1(ATM)-mediated interference suppresses clustered meiotic double-strand-break formation. Nature 520, 114-118, doi:10.1038/nature13993 (2015). 144Cheng, C. H. et al. SUMO modifications control assembly of synaptonemal complex and polycomplex in meiosis of Saccharomyces cerevisiae. Genes Dev 20, 2067-2081 (2006). 145Lundin, C. et al. Methyl methanesulfonate (MMS) produces heat-labile DNA damage but no detectable in vivo DNA double-strand breaks. Nucleic Acids Res 33, 3799-3811, doi:10.1093/nar/gki681 (2005). 146Steiger, M. G. et al. Transformation system for Hypocrea jecorina (Trichoderma reesei) that favors homologous integration and employs reusable bidirectionally selectable markers. Applied and environmental microbiology 77, 114-121, doi:10.1128/AEM.02100-10 (2011). 147Steinfeld, J. B. et al. Defining the influence of Rad51 and Dmc1 lineage-specific amino acids on genetic recombination. Genes Dev 33, 1191-1207, doi:10.1101/gad.328062.119 (2019). 148Raju, N. B. & Perkins, D. D. Barren perithecia in Neurospora crassa. Can J Genet Cytol 20, 41-59 (1978). 149Bishop, D. K., Park, D., Xu, L. & Kleckner, N. DMC1: a meiosis-specific yeast homolog of E. coli recA required for recombination, synaptonemal complex formation, and cell cycle progression. Cell 69, 439-456 (1992). 150Lydall, D., Nikolsky, Y., Bishop, D. K. & Weinert, T. A meiotic recombination checkpoint controlled by mitotic checkpoint genes. Nature 383, 840-843, doi:10.1038/383840a0 (1996). 151Mallory, J. C. & Petes, T. D. Protein kinase activity of Tel1p and Mec1p, two Saccharomyces cerevisiae proteins related to the human ATM protein kinase. Proc Natl Acad Sci U S A 97, 13749-13754, doi:10.1073/pnas.250475697 (2000). 152Shinohara, A., Gasior, S., Ogawa, T., Kleckner, N. & Bishop, D. K. Saccharomyces cerevisiae recA homologues RAD51 and DMC1 have both distinct and overlapping roles in meiotic recombination. Genes Cells 2, 615-629 (1997). 153Chen, Z., Yang, H. & Pavletich, N. P. Mechanism of homologous recombination from the RecA-ssDNA/dsDNA structures. Nature 453, 489-484 (2008). 154Xu, J. et al. Cryo-EM structures of human RAD51 recombinase filaments during catalysis of DNA-strand exchange. Nat Struct Mol Biol 24, 40-46, doi:10.1038/nsmb.3336 (2017). 155Lin, H. N. & Hsu, W. L. (BioRxiv, 2019). 156Schardl, C. L. et al. Plant-symbiotic fungi as chemical engineers: multi-genome analysis of the clavicipitaceae reveals dynamics of alkaloid loci. PLoS Genet 9, e1003323, doi:10.1371/journal.pgen.1003323 (2013). 157Winter, D. J. et al. Repeat elements organise 3D genome structure and mediate transcription in the filamentous fungus Epichloe festucae. PLoS Genet 14, e1007467, doi:10.1371/journal.pgen.1007467 (2018). 158Dong, S., Raffaele, S. & Kamoun, S. The two-speed genomes of filamentous pathogens: waltz with plants. Current opinion in genetics & development 35, 57-65, doi:10.1016/j.gde.2015.09.001 (2015). 159Frantzeskakis, L., Kusch, S. & Panstruga, R. The need for speed: compartmentalized genome evolution in filamentous phytopathogens. Molecular plant pathology 20, 3-7, doi:10.1111/mpp.12738 (2019). 160Schwessinger, B. et al. A Near-Complete Haplotype-Phased Genome of the Dikaryotic Wheat Stripe Rust Fungus Puccinia striiformis f. sp. tritici Reveals High Interhaplotype Diversity. mBio 9, doi:10.1128/mBio.02275-17 (2018). 161Zhou, L. et al. Systematic evaluation of library preparation methods and sequencing platforms for high-throughput whole genome bisulfite sequencing. Scientific reports 9, 10383, doi:10.1038/s41598-019-46875-5 (2019). 162Zhou, Q., Lim, J. Q., Sung, W. K. & Li, G. An integrated package for bisulfite DNA methylation data analysis with Indel-sensitive mapping. BMC bioinformatics 20, 47, doi:10.1186/s12859-018-2593-4 (2019). 163Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30, 772-780, doi:10.1093/molbev/mst010 (2013). 164Nakamura, T., Yamada, K. D., Tomii, K. & Katoh, K. Parallelization of MAFFT for large-scale multiple sequence alignments. Bioinformatics 34, 2490-2492, doi:10.1093/bioinformatics/bty121 (2018). 165Katoh, K., Rozewicki, J. & Yamada, K. D. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform 20, 1160-1166, doi:10.1093/bib/bbx108 (2019). 166Lassmann, T. & Sonnhammer, E. L. Kalign--an accurate and fast multiple sequence alignment algorithm. BMC Bioinformatics 6, 298, doi:10.1186/1471-2105-6-298 (2005). 167Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. Journal of molecular biology 215, 403-410, doi:10.1016/S0022-2836(05)80360-2 (1990). 168Mount, D. W. Using the Basic Local Alignment Search Tool (BLAST). CSH Protoc 2007, pdb top17, doi:10.1101/pdb.top17 (2007). 169Julien, J., Poirier-Hamon, S. & Brygoo, Y. Foret1, a reverse transcriptase-like sequence in the filamentous fungus Fusarium oxysporum. Nucleic Acids Res 20, 3933-3937, doi:10.1093/nar/20.15.3933 (1992). 170Shi, J. et al. Widespread gene conversion in centromere cores. PLoS Biol 8, e1000327, doi:10.1371/journal.pbio.1000327 (2010). 171Nambiar, M. & Smith, G. R. Repression of harmful meiotic recombination in centromeric regions. Semin Cell Dev Biol 54, 188-197, doi:10.1016/j.semcdb.2016.01.042 (2016). 172Sims, J., Copenhaver, G. P. & Schlogelhofer, P. Meiotic DNA Repair in the Nucleolus Employs a Nonhomologous End-Joining Mechanism. Plant Cell 31, 2259-2275, doi:10.1105/tpc.19.00367 (2019). 173Kobayashi, T. Ribosomal RNA gene repeats, their stability and cellular senescence. Proc Jpn Acad Ser B Phys Biol Sci 90, 119-129, doi:10.2183/pjab.90.119 (2014). 174Shiu, P. K., Raju, N. B., Zickler, D. & Metzenberg, R. L. Meiotic silencing by unpaired DNA. Cell 107, 905-916, doi:S0092-8674(01)00609-2 [pii] (2001). 175Hammond, T. M. Sixteen Years of Meiotic Silencing by Unpaired DNA. Adv Genet 97, 1-42, doi:10.1016/bs.adgen.2016.11.001 (2017). 176Flusberg, B. A. et al. Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat Methods 7, 461-465, doi:10.1038/nmeth.1459 (2010). 177Xu, L. & Seki, M. Recent advances in the detection of base modifications using the Nanopore sequencer. J Hum Genet 65, 25-33, doi:10.1038/s10038-019-0679-0 (2020). 178Zhang, X., Wu, R., Wang, Y., Yu, J. & Tang, H. Unzipping haplotypes in diploid and polyploid genomes. Comput Struct Biotechnol J 18, 66-72, doi:10.1016/j.csbj.2019.11.011 (2020). 179de Massy, B. Initiation of meiotic recombination: how and where? Conservation and specificities among eukaryotes. Annu Rev Genet 47, 563-599, doi:10.1146/annurev-genet-110711-155423 (2013). 180Carofiglio, F. et al. SPO11-independent DNA repair foci and their role in meiotic silencing. PLoS Genet 9, e1003538, doi:10.1371/journal.pgen.1003538 (2013). 181Farah, J. A., Cromie, G., Steiner, W. W. & Smith, G. R. A novel recombination pathway initiated by the Mre11/Rad50/Nbs1 complex eliminates palindromes during meiosis in Schizosaccharomyces pombe. Genetics 169, 1261-1274, doi:10.1534/genetics.104.037515 (2005). 182Storlazzi, A. et al. Meiotic double-strand breaks at the interface of chromosome movement, chromosome remodeling, and reductional division. Genes Dev 17, 2675-2687 (2003). 183Bowring, F. J., Yeadon, P. J. & Catcheside, D. E. Residual recombination in Neurospora crassa spo11 deletion homozygotes occurs during meiosis. Mol Genet Genomics 288, 437-444, doi:10.1007/s00438-013-0761-9 (2013). 184Bloomfield, G. Spo11-Independent Meiosis in Social Amoebae. Annual Review of Microbiology, Vol 72 72, 293-307, doi:10.1146/annurev-micro-090817-062232 (2018). 185Prinz, S., Amon, A. & Klein, F. Isolation of COM1, a new gene required to complete meiotic double-strand break-induced recombination in Saccharomyces cerevisiae. Genetics 146, 781-795 (1997). 186McKee, A. H. Z. & Kleckner, N. A general method for identifying recessive diploid-specific mutations in Saccharomyces cerevisiae, its application to the isolation of mutants blocked at intermediate stages of meiotic prophase and characterization of a new gene SAE2. Genetics 146, 797-816 (1997). 187Cannavo, E. & Cejka, P. Sae2 promotes dsDNA endonuclease activity within Mre11-Rad50-Xrs2 to resect DNA breaks. Nature 514, 122-125, doi:10.1038/nature13771 (2014). 188Andres, S. N., Li, Z. M., Erie, D. A. & Williams, R. S. Ctp1 protein-DNA filaments promote DNA bridging and DNA double-strand break repair. J Biol Chem 294, 3312-3320, doi:10.1074/jbc.RA118.006759 (2019). 189Diaz, R. L., Alcid, A. D., Berger, J. M. & Keeney, S. Identification of residues in yeast Spo11p critical for meiotic DNA double-strand break formation. Mol Cell Biol 22, 1106-1115 (2002). 190Zickler, D. From early homologue recognition to synaptonemal complex formation. Chromosoma 115, 158-174 (2006). 191Chen, S. Y. et al. Global analysis of the meiotic crossover landscape. Dev Cell 15, 401-415, doi:10.1016/j.devcel.2008.07.006 (2008). 192Mancera, E., Bourgon, R., Brozzi, A., Huber, W. & Steinmetz, L. M. High-resolution mapping of meiotic crossovers and non-crossovers in yeast. Nature 454, 479-485, doi:10.1038/nature07135 (2008). 193Anderson, C. M., Oke, A., Yam, P., Zhuge, T. & Fung, J. C. Reduced Crossover Interference and Increased ZMM-Independent Recombination in the Absence of Tel1/ATM. PLoS Genet 11, e1005478, doi:10.1371/journal.pgen.1005478 (2015). 194Blat, Y., Protacio, R. U., Hunter, N. & Kleckner, N. Physical and functional interactions among basic chromosome organizational features govern early steps of meiotic chiasma formation. Cell 111, 791-802 (2002). 195Ohta, K., Shibata, T. & Nicolas, A. Changes in Chromatin Structure at Recombination Initiation Sites during Yeast Meiosis. Embo Journal 13, 5754-5763, doi:DOI 10.1002/j.1460-2075.1994.tb06913.x (1994). 196Wu, T. C. & Lichten, M. Meiosis-induced double-strand break sites determined by yeast chromatin structure. Science 263, 515-518 (1994). 197Pan, J. et al. A Hierarchical Combination of Factors Shapes the Genome-wide Topography of Yeast Meiotic Recombination Initiation. Cell 144, 719-731, doi:10.1016/j.cell.2011.02.009 (2011). 198Aparicio, T., Baer, R., Gottesman, M. & Gautier, J. MRN, CtIP, and BRCA1 mediate repair of topoisomerase II-DNA adducts. J Cell Biol 212, 399-408, doi:10.1083/jcb.201504005 (2016). 199Hartsuiker, E., Neale, M. J. & Carr, A. M. Distinct requirements for the Rad32(Mre11) nuclease and Ctp1(CtIP) in the removal of covalently bound topoisomerase I and II from DNA. Mol Cell 33, 117-123, doi:10.1016/j.molcel.2008.11.021 (2009). 200Hoa, N. N. et al. Mre11 Is Essential for the Removal of Lethal Topoisomerase 2 Covalent Cleavage Complexes. Mol Cell 64, 580-592, doi:10.1016/j.molcel.2016.10.011 (2016). 201Liu, L. F. & Wang, J. C. Supercoiling of the DNA-Template during Transcription. Proceedings of the National Academy of Sciences of the United States of America 84, 7024-7027, doi:DOI 10.1073/pnas.84.20.7024 (1987). 202Wyckoff, E. & Hsieh, T. Functional Expression of a Drosophila Gene in Yeast - Genetic Complementation of DNA Topoisomerase-Ii. Proceedings of the National Academy of Sciences of the United States of America 85, 6272-6276, doi:DOI 10.1073/pnas.85.17.6272 (1988). 203Goto, T. & Wang, J. C. Yeast DNA Topoisomerase-Ii Is Encoded by a Single-Copy, Essential Gene. Cell 36, 1073-1080, doi:Doi 10.1016/0092-8674(84)90057-6 (1984). 204McClendon, A. K., Rodriguez, A. C. & Osheroff, N. Human topoisomerase II alpha rapidly relaxes positively supercoiled DNA - Implications for enzyme action ahead of replication forks. Journal of Biological Chemistry 280, 39337-39345, doi:DOI 10.1074/jbc.M503320200 (2005). 205Yu, X. A. et al. Genome-wide TOP2A DNA cleavage is biased toward translocated and highly transcribed loci. Genome Research 27, 1238-1249, doi:10.1101/gr.211615.116 (2017). 206Steverding, D. et al. In vitro antifungal activity of DNA topoisomerase inhibitors. Medical Mycology 50, 333-336, doi:10.3109/13693786.2011.609186 (2012). 207Malik, S. B., Ramesh, M. A., Hulstrand, A. M. & Logsdon, J. M., Jr. Protist homologs of the meiotic Spo11 gene and topoisomerase VI reveal an evolutionary history of gene duplication and lineage-specific loss. Mol Biol Evol 24, 2827-2841, doi:10.1093/molbev/msm217 (2007). 208Borde, V. & de Massy, B. Programmed induction of DNA double strand breaks during meiosis: setting up communication between DNA and the chromosome structure. Current Opinion in Genetics & Development 23, 147-155, doi:10.1016/j.gde.2012.12.002 (2013). 209Flowers, J. M. et al. Variation, sex, and social cooperation: molecular population genetics of the social amoeba Dictyostelium discoideum. PLoS Genet 6, e1001013, doi:10.1371/journal.pgen.1001013 (2010). 210Akematsu, T. et al. Post-meiotic DNA double-strand breaks occur in Tetrahymena, and require Topoisomerase II and Spo11. Elife 6, doi:10.7554/eLife.26176 (2017). 211Cha, R. S. & Kleckner, N. ATR homolog Mec1 promotes fork progression, thus averting breaks in replication slow zones. Science 297, 602-606, doi:10.1126/science.1071398 (2002). 212Hashash, N., Johnson, A. L. & Cha, R. S. Topoisomerase II- and condensin-dependent breakage of MEC1ATR-sensitive fragile sites occurs independently of spindle tension, anaphase, or cytokinesis. PLoS Genet 8, e1002978, doi:10.1371/journal.pgen.1002978 (2012).
|