|
1. Kronenberg, F. 2009. Emerging risk factors and markers of chronic kidney disease progression. Nature Reviews Nephrology 5: 677. 2.Nderitu, P., L. Doos, P. W. Jones, S. J. Davies, and U. T. Kadam. 2013. Non-steroidal anti-inflammatory drugs and chronic kidney disease progression: a systematic review. Family practice 30: 247-255. 3.黃冠霖, and 黃尚志. 2014. 台灣腎臟病安寧照護的概況. 腎臟與透析 26: 1-6. 4.連澤仁, and 施君儒. 2020. 慢性腎臟病與糖尿病-臨床上如何處理此共病症. 臨床醫學月刊 85: 299-315. 5.Wang, M., J. Lv, X. Zhang, P. Chen, M. Zhao, and H. Zhang. 2020. Secondary IgA nephropathy shares the same immune features with primary IgA nephropathy. Kidney international reports 5: 165-172. 6.Ponticelli, C., and R. J. Glassock. 2010. Posttransplant recurrence of primary glomerulonephritis. Clinical Journal of the American Society of Nephrology 5: 2363-2372. 7.Mahajan, A., J. Amelio, K. Gairy, G. Kaur, R. A. Levy, D. Roth, and D. Bass. 2020. Systemic lupus erythematosus, lupus nephritis and end-stage renal disease: a pragmatic review mapping disease severity and progression. Lupus: 0961203320932219. 8.Gordon, C., D. Jayne, C. Pusey, D. Adu, Z. Amoura, M. Aringer, J. Ballerin, R. Cervera, J. Calvo-Alén, and C. Chizzolini. 2009. European consensus statement on the terminology used in the management of lupus glomerulonephritis. Lupus 18: 257-263. 9.Tecklenborg, J., D. Clayton, S. Siebert, and S. Coley. 2018. The role of the immune system in kidney disease. Clinical & Experimental Immunology 192: 142-150. 10.Cohen, S. D., and P. L. Kimmel. 2008. Immune complex renal disease and human immunodeficiency virus infection. In Seminars in nephrology. Elsevier. 535-544. 11.Nair, R., and P. Walker. 2006. Is IgA nephropathy the commonest primary glomerulopathy among young adults in the USA? Kidney international 69: 1455-1458. 12.Coppo, R. 2017. Clinical and histological risk factors for progression of IgA nephropathy: an update in children, young and adult patients. Journal of nephrology 30: 339-346. 13.Barratt, J., J. Feehally, and A. C. Smith. 2004. Pathogenesis of IgA nephropathy. In Seminars in nephrology. Elsevier. 197-217. 14.Emancipator, S., G. Gallo, and M. Lamm. 1985. IgA nephropathy: perspectives on pathogenesis and classification. Clinical nephrology 24: 161. 15.Radford, M. G., J. V. Donadio, E. J. Bergstralh, and J. P. Grande. 1997. Predicting renal outcome in IgA nephropathy. Journal of the American Society of Nephrology 8: 199-207. 16.Gutiérrez, E., E. González, E. Hernández, E. Morales, M. Á. Martínez, G. Usera, and M. Praga. 2007. Factors that determine an incomplete recovery of renal function in macrohematuria-induced acute renal failure of IgA nephropathy. Clinical Journal of the American Society of Nephrology 2: 51-57. 17.Frimat, L., S. Briançon, D. Hestin, B. Aymard, E. Renoult, T. C. Huu, and M. Kessler. 1997. IgA nephropathy: prognostic classification of end-stage renal failure. L'Association des Néphrologues de l'Est. Nephrology, dialysis, transplantation: official publication of the European Dialysis and Transplant Association-European Renal Association 12: 2569-2575. 18.Sheng, C., and X.-K. Li. 2020. The Role of Immune Modulation in Pathogenesis of IgA Nephropathy. Frontiers in Medicine 7: 92. 19.Yokoyama, H., T. Wada, K. Furuichi, C. Segawa, M. Shimizu, K. i. Kobayashi, S. b. Su, N. Mukaida, and K. Matsushima. 1998. Urinary levels of chemokines (MCAF/MCP‐1, IL‐8) reflect distinct disease activities and phases of human IgA nephropathy. Journal of leukocyte biology 63: 493-499. 20.Nagata, M., Y. Akioka, Y. Tsunoda, Y. Komatsu, H. Kawaguchi, Y. Yamaguchi, and K. Ito. 1995. Macrophages in childhood IgA nephropathy. Kidney international 48: 527-535. 21.Leung, J. C., S. C. Tang, L. Y. Chan, A. W. Tsang, H. Y. Lan, and K. N. Lai. 2003. Polymeric IgA increases the synthesis of macrophage migration inhibitory factor by human mesangial cells in IgA nephropathy. Nephrology Dialysis Transplantation 18: 36-45. 22.Hua, K.-F., S.-M. Yang, T.-Y. Kao, J.-M. Chang, H.-L. Chen, Y.-J. Tsai, A. Chen, S.-S. Yang, L. K. Chao, and S.-M. Ka. 2013. Osthole mitigates progressive IgA nephropathy by inhibiting reactive oxygen species generation and NF-κB/NLRP3 pathway. PloS one 8: e77794. 23.Yang, S.-M., S.-M. Ka, K.-F. Hua, T.-H. Wu, Y.-P. Chuang, Y.-W. Lin, F.-L. Yang, S.-H. Wu, S.-S. Yang, and S.-H. Lin. 2013. Antroquinonol mitigates an accelerated and progressive IgA nephropathy model in mice by activating the Nrf2 pathway and inhibiting T cells and NLRP3 inflammasome. Free Radical Biology and Medicine 61: 285-297. 24.Tsai, Y.-L., K.-F. Hua, A. Chen, C.-W. Wei, W.-S. Chen, C.-Y. Wu, C.-L. Chu, Y.-L. Yu, C.-W. Lo, and S.-M. Ka. 2017. NLRP3 inflammasome: Pathogenic role and potential therapeutic target for IgA nephropathy. Scientific reports 7: 1-15. 25.Brugos, B., Z. Vincze, S. Sipka, G. Szegedi, and M. Zeher. 2012. Serum and urinary cytokine levels of SLE patients. Die Pharmazie-An International Journal of Pharmaceutical Sciences 67: 411-413. 26.Gigante, A., M. Gasperini, A. Afeltra, B. Barbano, D. Margiotta, R. Cianci, I. De Francesco, and A. Amoroso. 2011. Cytokines expression in SLE nephritis. Eur Rev Med Pharmacol Sci 15: 15-24. 27.Dong, G., R. Ye, W. Shi, S. Liu, T. Wang, X. Yang, N. Yang, and X. Yu. 2003. IL-17 induces autoantibody overproduction and peripheral blood mononuclear cell overexpression of IL-6 in lupus nephritis patients. Chinese medical journal 116: 543-548. 28.Yap, D. Y., and K. N. Lai. 2015. Pathogenesis of renal disease in systemic lupus erythematosus—the role of autoantibodies and lymphocytes subset abnormalities. International journal of molecular sciences 16: 7917-7931. 29.Johnson, J. L., R. L. Rosenthal, J. J. Knox, A. Myles, M. S. Naradikian, J. Madej, M. Kostiv, A. M. Rosenfeld, W. Meng, and S. R. Christensen. 2020. The Transcription Factor T-bet Resolves Memory B Cell Subsets with Distinct Tissue Distributions and Antibody Specificities in Mice and Humans. Immunity. 30.Gao, J., L. Wu, S. Wang, and X. Chen. 2020. Role of Chemokine (C–X–C Motif) Ligand 10 (CXCL10) in Renal Diseases. Mediators of Inflammation 2020. 31.Yang, S.-R., K.-F. Hua, L. J. Chu, Y.-K. Hwu, S.-M. Yang, C.-Y. Wu, T.-J. Lin, J.-C. Weng, H. Zhao, and W.-H. Hsu. 2020. Xenon blunts NF-κB/NLRP3 inflammasome activation and improves acute onset of accelerated and severe lupus nephritis in mice. Kidney International. 32.Wu, C.-Y., K.-F. Hua, C.-L. Chu, S.-R. Yang, J. L. Arbiser, S.-S. Yang, Y.-C. Lin, F.-C. Liu, S.-M. Yang, and S.-M. Ka. 2020. Tris DBA Ameliorates Accelerated and Severe Lupus Nephritis in Mice by Activating Regulatory T Cells and Autophagy and Inhibiting the NLRP3 Inflammasome. The Journal of Immunology 204: 1448-1461. 33.Lin, T.-J., C.-Y. Wu, P.-Y. Tsai, W.-H. Hsu, K.-F. Hua, C.-L. Chu, Y.-C. Lee, A. Chen, S.-L. Lee, and Y.-J. Lin. 2019. Accelerated and severe lupus nephritis benefits from M1, an active metabolite of ginsenoside, by regulating NLRP3 inflammasome and T cell functions in mice. Frontiers in Immunology 10: 1951. 34.Barratt, J., and J. Feehally. 2006. Treatment of IgA nephropathy. Kidney international 69: 1934-1938. 35.Eitner, F., D. Ackermann, R. Hilgers, and J. Floege. 2008. Supportive versus immunosuppressive therapy of progressive IgA nephropathy (STOP) IgAN trial: rationale and study protocol. Journal of nephrology 21: 284. 36.Wang, W., and N. Chen. 2013. Treatment of progressive IgA nephropathy: An update. In New Insights into Glomerulonephritis. Karger Publishers. 75-83. 37.Dooley, M., F. Houssiau, C. Aranow, D. D’Cruz, A. Askanase, D. Roth, Z. Zhong, S. Cooper, W. Freimuth, and E. Ginzler. 2013. Effect of belimumab treatment on renal outcomes: results from the phase 3 belimumab clinical trials in patients with SLE. Lupus 22: 63-72. 38.Doria, A., M. Zen, M. Canova, S. Bettio, N. Bassi, L. Nalotto, M. Rampudda, A. Ghirardello, and L. Iaccarino. 2010. SLE diagnosis and treatment: when early is early. Autoimmunity reviews 10: 55-60. 39.Lee, S.-J., E. Silverman, and J. M. Bargman. 2011. The role of antimalarial agents in the treatment of SLE and lupus nephritis. Nature Reviews Nephrology 7: 718. 40.Chang, Y. P., S. M. Ka, W. H. Hsu, A. Chen, L. K. Chao, C. C. Lin, C. C. Hsieh, M. C. Chen, H. W. Chiu, and C. L. Ho. 2015. Resveratrol inhibits NLRP3 inflammasome activation by preserving mitochondrial integrity and augmenting autophagy. Journal of cellular physiology 230: 1567-1579. 41.Liao, P.-C., L. K. Chao, J.-C. Chou, W.-C. Dong, C.-N. Lin, C.-Y. Lin, A. Chen, S.-M. Ka, C.-L. Ho, and K.-F. Hua. 2013. Lipopolysaccharide/adenosine triphosphate-mediated signal transduction in the regulation of NLRP3 protein expression and caspase-1-mediated interleukin-1β secretion. Inflammation Research 62: 89-96. 42.Wong, W.-T., L.-H. Li, Y. K. Rao, S.-P. Yang, S.-M. Cheng, W.-Y. Lin, C.-C. Cheng, A. Chen, and K.-F. Hua. 2018. Repositioning of the β-blocker carvedilol as a novel autophagy inducer that inhibits the NLRP3 inflammasome. Frontiers in immunology 9: 1920. 43.Wu, C.-Y., K.-F. Hua, W.-H. Hsu, Y. Suzuki, L. J. Chu, Y.-C. Lee, A. Takahata, S.-L. Lee, C.-C. Wu, and D. J. Nikolic-Paterson. 2020. IgA Nephropathy Benefits from Compound K Treatment by Inhibiting NF-κB/NLRP3 Inflammasome and Enhancing Autophagy and SIRT1. The Journal of Immunology. 44.Hu, N., H. Long, M. Zhao, H. Yin, and Q. Lu. 2009. Aberrant expression pattern of histone acetylation modifiers and mitigation of lupus by SIRT1-siRNA in MRL/lpr mice. Scandinavian journal of rheumatology 38: 464-471. 45.Bhandarkar, S. S., J. Bromberg, C. Carrillo, P. Selvakumar, R. K. Sharma, B. N. Perry, B. Govindarajan, L. Fried, A. Sohn, and K. Reddy. 2008. Tris (dibenzylideneacetone) dipalladium, a N-myristoyltransferase-1 inhibitor, is effective against melanoma growth in vitro and in vivo. Clinical Cancer Research 14: 5743-5748. 46.De La Puente, P., F. Azab, B. Muz, M. Luderer, J. Arbiser, and A. K. Azab. 2016. Tris DBA palladium overcomes hypoxia-mediated drug resistance in multiple myeloma. Leukemia & lymphoma 57: 1677-1686. 47.Díaz, B., K. T. Ostapoff, J. E. Toombs, J. Lo, M. Y. Bonner, A. Curatolo, V. Adsay, R. A. Brekken, and J. L. Arbiser. 2016. Tris DBA palladium is highly effective against growth and metastasis of pancreatic cancer in an orthotopic model. Oncotarget 7: 51569. 48.Ka, S.-M., J.-C. Lin, T.-J. Lin, F.-C. Liu, L. K. Chao, C.-L. Ho, L.-T. Yeh, H.-K. Sytwu, K.-F. Hua, and A. Chen. 2015. Citral alleviates an accelerated and severe lupus nephritis model by inhibiting the activation signal of NLRP3 inflammasome and enhancing Nrf2 activation. Arthritis research & therapy 17: 331. 49.Chen, T., S.-H. Dai, X. Li, P. Luo, J. Zhu, Y.-H. Wang, Z. Fei, and X.-F. Jiang. 2018. Sirt1-Sirt3 axis regulates human blood-brain barrier permeability in response to ischemia. Redox biology 14: 229-236. 50.Tong, W., L. Ju, M. Qiu, Q. Xie, Y. Chen, W. Shen, W. Sun, W. Wang, and J. Tian. 2016. Liraglutide ameliorates non‐alcoholic fatty liver disease by enhancing mitochondrial architecture and promoting autophagy through the SIRT1/SIRT3–FOXO3a pathway. Hepatology Research 46: 933-943. 51.Zeng, Y., K. Yang, F. Wang, L. Zhou, Y. Hu, M. Tang, S. Zhang, S. Jin, J. Zhang, and J. Wang. 2016. The glucagon like peptide 1 analogue, exendin-4, attenuates oxidative stress-induced retinal cell death in early diabetic rats through promoting Sirt1 and Sirt3 expression. Experimental eye research 151: 203-211. 52.Carnevale, I., L. Pellegrini, P. D'Aquila, S. Saladini, E. Lococo, L. Polletta, E. Vernucci, E. Foglio, S. Coppola, and L. Sansone. 2017. SIRT1‐SIRT3 axis regulates cellular response to oxidative stress and etoposide. Journal of Cellular Physiology 232: 1835-1844. 53.Duan, W.-J., Y.-F. Li, F.-L. Liu, J. Deng, Y.-P. Wu, W.-L. Yuan, B. Tsoi, J.-L. Chen, Q. Wang, and S.-H. Cai. 2016. A SIRT3/AMPK/autophagy network orchestrates the protective effects of trans-resveratrol in stressed peritoneal macrophages and RAW 264.7 macrophages. Free Radical Biology and Medicine 95: 230-242. 54.Liu, T., X. Ma, T. Ouyang, H. Chen, Y. Xiao, Y. Huang, J. Liu, and M. Xu. 2019. Efficacy of 5-aminolevulinic acid–based photodynamic therapy against keloid compromised by downregulation of SIRT1-SIRT3-SOD2-mROS dependent autophagy pathway. Redox biology 20: 195-203. 55.Das, S., G. Mitrovsky, H. R. Vasanthi, and D. K. Das. 2014. Antiaging properties of a grape-derived antioxidant are regulated by mitochondrial balance of fusion and fission leading to mitophagy triggered by a signaling network of Sirt1-Sirt3-Foxo3-PINK1-PARKIN. Oxidative medicine and cellular longevity 2014.
|