跳到主要內容

臺灣博碩士論文加值系統

(100.24.118.144) 您好!臺灣時間:2022/12/06 05:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊蕙宇
研究生(外文):YANG, HUI-YU
論文名稱:比較matriptase、prostasin及HAI-1 在急性和慢性傷口中的變化
論文名稱(外文):Compare the Variation of Matriptase, Prostasin and HAI-1 in Acute and Chronic Wounds
指導教授:王正康
指導教授(外文):WANG, JEHNG-KANG
口試委員:王正康李恒昇李明學
口試委員(外文):WANG, JEHNG-KANG
口試日期:2020-05-16
學位類別:碩士
校院名稱:國防醫學院
系所名稱:生物化學研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:146
中文關鍵詞:蛋白水解酶急性傷口慢性傷口
外文關鍵詞:proteaseacute woundchronic wound
相關次數:
  • 被引用被引用:0
  • 點閱點閱:93
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
目錄
表目錄 IV
圖目錄 V
縮寫表 VII
中文摘要 VIII
Abstract X
第一章 緒論 1
第一節、皮膚 1
壹、皮膚結構 1
貳、表皮層之分層 2
參、皮膚幹細胞 4
肆、表皮層之終端分化 (terminal differentiation) 4
伍、皮膚的附屬器 (skin appendages) 6
第二節、傷口 8
壹、傷口癒合 (wound healing) 8
貳、急性傷口 (acute wound) 10
參、慢性傷口 (chronic wound) 11
第三節、matriptase 15
壹、蛋白質水解酶 (protease) 15
貳、絲胺酸蛋白酶 (serine protease) 16
參、matriptase的發現 17
肆、matriptase的結構 17
伍、matriptase的分佈與生理功能 19
陸、matriptase的病理角色 20
第四節、prostasin 21
壹、prostasin的發現 21
貳、prostasin的結構與活化 21
參、prostasin的分佈與生理功能 22
第五節、Hepatocyte growth factor activator inhibitor-1 (HAI-1) 22
壹、HAI-1的發現 23
貳、HAI-1的結構 23
參、HAI-1的分布與生理功能 24
第六節、matriptase與HAI-1 24
壹、matriptase的活化 24
貳、matriptase可能的活化機制 25
參、matriptase的下游反應 26
肆、matriptase與HAI-1的平衡 27
第七節、實驗室的研究成果 28
第八節、研究目的 29
第二章 實驗材料與方法 30
第一節、實驗材料 30
壹、試劑 30
貳、套裝實驗組 32
參、抗體 33
肆、實驗耗材 34
伍、實驗儀器 35
陸、實驗道德倫理說明 36
第二節、實驗方法 36
壹、檢體處理 36
貳、冷凍切片 (Frozen section) 37
參、免疫組織化學染色 (Immunohistochemistry, IHC) 38
肆、蘇木紫與伊紅染色 (Hematoxylin & Eosin stain) 39
伍、封片與組織拍照 39
陸、細胞培養 (Cell culture) 40
柒、CRISPR knockout細胞 40
捌、細胞酸處理 (Treatment of acidic buffer) 41
玖、西方墨點轉漬法 (western blotting) 41
拾、免疫組織化學染色判讀 (Interpretation of IHC) 43
拾壹、統計分析 (Statistical analysis) 45
第三章 實驗結果 46
第一節、比較不同天數急性傷口之蛋白質表現變化 46
壹、總量matriptase (M24) 的表現變化 46
貳、HAI-1 (M19) 的表現變化 46
參、prostasin (YL11) 的表現變化 47
肆、Involucrin的表現變化 47
伍、Epithelial tongue的形成 47
第二節、比較急性和慢性傷口治療前後之蛋白質表現差異 48
壹、總量matriptase (M24) 的表現差異 48
貳、HAI-1 (M19) 的表現差異 48
參、prostasin (YL11) 的表現差異 49
肆、皮膚幹細胞標記蛋白 (K15) 的表現差異 49
伍、皮膚蘭氏細胞 (CD207) 的表現差異 49
第三節、比較慢性傷口─有無糖尿病治療前後的蛋白質表現之差異 50
壹、總量matriptase (M24) 的表現差異 50
貳、HAI-1 (M19) 的表現差異 50
參、prostasin (YL11) 的表現差異 51
第四節、比較慢性傷口─有無洗腎治療前後的蛋白質表現之差異 51
壹、總量matriptase (M24) 的表現差異 52
貳、HAI-1 (M19) 的表現差異 52
參、prostasin (YL11) 的表現差異 52
第五節、比較有糖尿病沒洗腎的病患在治療前後其癒合良好或不佳的蛋白質表現差異 53
壹、總量matriptase (M24) 的表現差異 53
貳、HAI-1 (M19) 的表現差異 53
參、prostasin (YL11) 的表現差異 54
第六節、比較糖尿病足與糖尿病潰瘍在治療前後的皮膚幹細胞表現變化 54
第七節、比較大組織中較健康處與傷口處的蛋白質表現差異 55
壹、總量matriptase (M24) 的表現差異 55
貳、HAI-1 (M19) 的表現差異 55
參、prostasin (YL11)的表現差異 55
肆、透過Langerin (CD207) 觀察蘭氏細胞的差異 56
伍、皮膚幹細胞 (K15)的表現差異 56
第八節、prostastin與角質細胞分化和matriptase的關聯 56
壹、角質細胞進行終端分化的細胞型態與蛋白質表現變化 57
貳、將prostasin進行knockout來觀察其與分化和其它蛋白質之間的關係 58
第四章 討論 60
第一節、不同天數的急性傷口中蛋白質的表現變化 60
第二節、傷口治療前後的定義 60
第三節、有無洗腎治療前後的蛋白質表現之差異 60
第四節、癒合好或不佳的定義 61
第五節、傷口癒合良好的糖尿病足與糖尿病潰瘍差異 62
第六節、蘭氏細胞在急性和慢性傷口與傷口和非傷口的差異 62
第七節、prostasin與角質細胞分化的關係 63
第五章 結論 64
第六章 未來研究方向 66
第七章 參考文獻 67


[1] Adone B, Elisabetta B, Vincenza De G, Eleonora R, Vincenzo R, Ronni W, "Structure and function of the epidermis related to barrier properties," Clinics in Dermatology, vol. 30, pp. 257-262, 2012.
[2] Richardson M, "Understanding the structure and function of the skin," Nursing times, vol. 99, pp.46-48, 2003.
[3] A. Sandilands, C. Sutherland, A. D. Irvine, and W. H. McLean, "Filaggrin in the frontline: role in skin barrier function and disease," Journal of Cell Science, vol. 122, no. 9, pp. 1285-1294, 2009.
[4] D. D. Bikle, Y. Oda, and Z. Xie, "Calcium and 1,25(OH)2D: interactingdrivers of epidermal differentiation," The Journal of Steroid Biochemistry and Molecular Biology, vol. 89-90, no. 1-5, pp. 355-360, 2004.
[5] L. Micallef et al., "Effects of extracellular calcium on the growth-differentiation switch in immortalized keratinocyte HaCaT cells compared with normal human keratinocytes," Experimental Dermatology, vol. 18, no.2, pp. 143-151, 2009.
[6] I. Colombo et al., "HaCaT Cells as a Reliable In Vitro Differentiation Model to Dissect the Inflammatory/Repair Response of Human Keratinocytes," Mediators of Inflammation, vol. 2017, 2017, doi: 10.1155/2017/7435621.
[7] Jiangfan Xie, Bin Yao, Yutong Han, Sha Huang, and Xiaobing Fu "Skin appendage-derived stem cells: cell biology and potential for wound repair," Burns Trauma, vol. 4, 2016, doi: 10.1186/s41038-016-0064-6.
[8] Widelitz R. B, Jiang T. X, Noveen A, Ting-Berreth S. A, Yin E, Jung H. S, Chuong C. M., "Molecular histology in skin appendage morphogenesis," Microscopy Research and Technique, vol. 38, pp. 452-465, 1997.
[9] Nurden AT, Nurden P, Sanchez M, Andia I, Anitua E, "Platelets and wound healing," Frontiers in Bioscience, vol. 13, pp. 3525-3548, 2008.
[10] E. A. Gantwerker and D. B. Hom, "Skin: histology and physiology of wound healing," Facial Plastic Surgery Clinics of North America, vol. 19, no. 3, pp. 441-453, 2011.
[11] Ana Cristina de Oliveira Gonzalez, Tila Fortuna Costa, Zilton de Araújo Andrade, and Alena Ribeiro Alves Peixoto Medrado, "Wound healing - A literature review," Anais Brasileiros De Dermatologia, vol. 91, no. 5, pp. 614-620, 2016.
[12] A. Haas, D. Scheglmann, T. Lazar, D. Gallwitz, and W. Wickner, "The GTPase Ypt7p of Saccharomyces cerevisiae is required on both partner vacuoles for the homotypic fusion step of vacuole inheritance," The EMBO Journal, vol. 14, no. 21, pp. 5258-5270, 1995.
[13] G. C. Gurtner, S. Werner, Y. Barrandon, and M. T. Longaker, "Wound repair and regeneration," Nature, vol. 453, no. 7193, pp. 314-321, 2008.
[14] Ian A Darby, Betty Laverdet, Frédéric Bonté, and Alexis Desmoulière, "Fibroblasts and myofibroblasts in wound healing," Clinical Cosmetic and Investigational Dermatology, vol. 7, pp. 301-311, 2014.
[15] Meilang Xue and Christopher J. Jackson, "Extracellular matrix reorganization during wound healing and its impact on abnormal scarring," Advances in Wound Care, vol. 4, no. 3, pp. 119-136, 2015.
[16] S. Akita et al., "Early experiences with stem cells in treating chronic wounds," Clinics in Plastic Surgery, vol. 39, no. 3, pp. 281-292, 2012.
[17] J. L. Beebe-Dimmer, J. R. Pfeifer, J. S. Engle, and D. Schottenfeld, "The epidemiology of chronic venous insufficiency and varicose veins," Annals of Epidemiology, vol. 15, no. 3, pp. 175-184, 2005.
[18] M. Callam, "Epidemiology of varicose veins," British Journal of Surgery, vol. 81, no. 2, pp. 167-173, 1994.
[19] A. J. Boulton, L. Vileikyte, G. Ragnarson-Tennvall, and J. Apelqvist, "The global burden of diabetic foot disease," The Lancet, vol. 366, no. 9498, pp. 1719-1724, 2005.
[20] C. K. Sen, "Wound healing essentials: let there be oxygen," Wound Repair and Regeneration, vol. 17, no. 1, pp. 1-18, 2009.
[21] Alexiadou, Kleopatra, and John Doupis., "Management of diabetic foot ulcers," Diabetes therapy, vol. 3, 2012, doi: 10.1007/s13300-012-0004-9.
[22] N. D. Rawlings and A. J. Barrett, "Evolutionary families of peptidases," Biochemical Journal, vol. 290, no. 1, pp. 205-218, 1993.
[23] P. Ovaere, S. Lippens, P. Vandenabeele, and W. Declercq, "The emerging roles of serine protease cascades in the epidermis," Trends in Biochemical Sciences, vol. 34, no. 9, pp. 453-463, 2009.
[24] K. List, T. H. Bugge, and R. Szabo, "Matriptase: potent proteolysis on the cell surface," Molecular Medicine, vol. 12, no. 1-3, pp. 1-7, 2006.
[25] Y. E. Shi, J. Torri, L. Yieh, A. Wellstein, M. E. Lippman, and R. B. Dickson, "Identification and characterization of a novel matrix-degrading protease from hormone-dependent human breast cancer cells," Cancer Research, vol. 53, no. 6, pp. 1409-1415, 1993.
[26] C. Y. Lin, J. Anders, M. Johnson, Q. A. Sang, and R. B. Dickson, "Molecular cloning of cDNA for matriptase, a matrix-degrading serine protease with trypsin-like activity," Journal of Biological Chemistry, vol. 274, no. 26, pp. 18231-18236, 1999.
[27] C. Y. Lin, J. Anders, M. Johnson, and R. B. Dickson, "Purification and characterization of a complex containing matriptase and a Kunitz-type serine protease inhibitor from human milk," Journal of Biological Chemistry, vol. 274, no. 26, pp. 18237-18242, 1999.
[28] H. Tanimoto, L. J. Underwood, Y. Wang, K. Shigemasa, T. H. Parmley, and T. O’Brien, "Ovarian tumor cells express a transmembrane serine protease: a potential candidate for early diagnosis and therapeutic intervention," Tumor Biology, vol. 22, no. 2, pp. 104-114, 2001.
[29] T. Takeuchi, M. A. Shuman, and C. S. Craik, "Reverse biochemistry: use of macromolecular protease inhibitors to dissect complex biological processes and identify a membrane-type serine protease in epithelial cancer and normal tissue," Proceedings of the National Academy of Sciences, vol. 96, no. 20, pp. 11054-11061, 1999.
[30] M. G. Kim et al., "Cloning and chromosomal mapping of a gene isolated from thymic stromal cells encoding a new mouse type II membrane serine protease, epithin, containing four LDL receptor modules and two CUB domains," Immunogenetics, vol. 49, no. 5, pp. 420-428, 1999.
[31] T. M. Antalis, M. S. Buzza, K. M. Hodge, J. D. Hooper, and S. Netzel-Arnett, "The cutting edge: membrane-anchored serine protease activities in the pericellular microenvironment," Biochem, vol. 428, no. 3, pp. 325-346, 2010.
[32] C. J. Chen et al., "Increased matriptase zymogen activation in inflammatory skin disorders," American Journal of Physiology Cell Physiology, vol. 300, no. 3, pp. C406-C415, 2011.
[33] C.-Y. Lin et al., "Zymogen activation, inhibition, and ectodomain shedding of matriptase," Frontiers in Bioscience, vol. 13, pp. 621-635, 2008.
[34] C. Kim et al., "Filamin is essential for shedding of the transmembrane serine protease, epithin," EMBO Reports, vol. 6, no. 11, pp. 1045-1051, 2005.
[35] Karin List, Thomas H Bugge, and Roman Szabo, "Matriptase: potent proteolysis on the cell surface," Molecular Medicine, vol. 12, no. 1-3, pp. 1-7, 2006.
[36] M. D. Oberst, B. Singh, M. Ozdemirli, R. B. Dickson, M. D. Johnson, and C. Y. Lin, "Characterization of matriptase expression in normal human tissues," The Journal of Histochemistry & Cytochemistry, vol. 51, no. 8, pp. 1017-1025, 2003.
[37] K. List et al., "Matriptase/MT-SP1 is required for postnatal survival, epidermal barrier function, hair follicle development, and thymic homeostasis," Oncogene, vol. 21, no. 23, pp. 3765-3779, 2002.
[38] Y. W. Chen, J. K. Wang, F. P. Chou, B. Y. Wu, H. C. Hsiao, H. Chiu, Z. Xu, A. NH Baksh, Galen Shi, Malvika Kaul, Robert Barndt, Victoria K. Shanmugam, Michael D. Johnson, and C. Y. Lin, "Matriptase regulates proliferation and early, but not terminal, differentiation of human keratinocytes," Journal of Investigative Dermatology, vol. 134, no.2, pp. 405-414, 2014.
[39] S. L. Lee, R. B. Dickson, and C. Y. Lin, "Activation of hepatocyte growth factor and urokinase/plasminogen activator by matriptase, an epithelial membrane serine protease," Journal of Biological Chemistry, vol. 275, no. 47, pp. 36720-36725, 2000.
[40] G. LINDNER et al., "Involvement of hepatocyte growth factor/scatter factor and Met receptor signaling in hair follicle morphogenesis and cycling," The Federation of American Societies for Experimental Biology Journal, vol. 14, no. 2, pp. 319-332, 2000.
[41] N. J. Ronaghan et al., "The serine protease-mediated increase in intestinal epithelial barrier function is dependent on occludin and requires an intact tight junction," American Journal of Physiology Gastrointestinal and Liver Physiology, vol. 311, no. 3, pp. G466-G479, 2016.
[42] S. Satomi, Y. Yamasaki, S. Tsuzuki, Y. Hitomi, T. Iwanaga, and T. Fushiki, "A role for membrane-type serine protease (MT-SP1) in intestinal epithelial turnover," Biochemical and Biophysical Research Communications, vol. 287, no. 4, pp. 995-1002, 2001.
[43] L. Zeng, J. Cao, and X. Zhang, "Expression of serine protease SNC19/matriptase and its inhibitor hepatocyte growth factor activator inhibitor type 1 in normal and malignant tissues of gastrointestinal tract," World Journal of Gastroenterology, vol. 11, no. 39, pp. 6202-6207, 2005.
[44] J. Y. Kang et al., "Tissue microarray analysis of hepatocyte growth factor/met pathway components reveals a role for met, matriptase, and hepatocyte growth factor activator inhibitor 1 in the progression of node-negative breast cancer," Cancer Research, vol. 63, no. 5, pp. 1101-1105, 2003.
[45] L. K. Vogel et al., "The ratio of matriptase/HAI-1 mRNA is higher in colorectal cancer adenomas and carcinomas than corresponding tissue from control individuals," BioMed Central Cancer, vol. 6, 2006, doi:10.1186/1471-2407-6-176.
[46] J. S. Jin, D. S. Hsieh, S. H. Loh, A. Chen, C. W. Yao, and C. Y. Yen, "Increasing expression of serine protease matriptase in ovarian tumors: tissue microarray analysis of immunostaining score with clinicopathological parameters," Modern Pathology, vol. 19, no. 3, pp. 447-452, 2006.
[47] A. C. Riddick et al., "Identification of degradome components associated with prostate cancer progression by expression analysis of human prostatic tissues," British Journal of Cancer, vol. 92, no. 12, pp. 2171-2180, 2005.
[48] J. X. Yu, L. Chao, and J. Chao, "Prostasin is a novel human serine proteinase from seminal fluid. Purification, tissue distribution, and localization in prostate gland," Journal of Biological Chemistry, vol. 269, no. 29, pp. 18843-18848, 1994.
[49] X. Y. Jack, L. Chao, D. C. Ward, and J. Chao, "Structure and chromosomal localization of the human prostasin (PRSS8) gene," Genomics, vol. 32, no. 3, pp. 334-340, 1996.
[50] C. Leyvraz et al., "The epidermal barrier function is dependent on the serine protease CAP1/Prss8," Journal of Cell Biology, vol. 170, no. 3, pp. 487-496, 2005.
[51] X. Y. Jack, L. Chao, and J. Chao, "Molecular cloning, tissue-specific expression, and cellular localization of human prostasin mRNA," Journal of Biological Chemistry, vol. 270, no. 22, pp. 13483-13489, 1995.
[52] S. Aggarwal, P. K. Dabla, and S. Arora, "Prostasin: an epithelial sodium channel regulator," Biomark, vol. 2013, 2013, doi: 10.1155/2013/179864.
[53] S. Frateschi et al., "PAR2 absence completely rescues inflammation and ichthyosis caused by altered CAP1/Prss8 expression in mouse skin," Nature Communication, vol. 2, 2011, doi: 10.1038/ncomms1162.
[54] S. Friis et al., "A matriptase-prostasin reciprocal zymogen activation complex with unique features: prostasin as a non-enzymatic co-factor for matriptase activation," Journal of Biological Chemistry, vol. 288, no. 26, pp. 19028-19039, 2013.
[55] C. H. Lai et al., "Matriptase and prostasin are expressed in human skin in an inverse trend over the course of differentiation and are targeted to different regions of the plasma membrane," Biology Open, vol. 5, no. 10, pp. 1380-1387, 2016.
[56] S. P. Lee, C. Y. Kao, S.C. Chang, Y. L. Chiu, Y. J. Chen, M. H.G. Chen, C. C. Chang, Y. W. Lin, C. P. Chiang , J. K. Wang, C. Y. Lin, M. D. Johnson, "Tissue distribution and subcellular localizations determine in vivo functional relationship among prostasin, matriptase, HAI-1, and HAI-2 in human skin," PLoS One, vol. 13, no. 2, 2018, doi: 10.1371/journal.pone.0192632.
[57] T. Shimomura et al., "Hepatocyte growth factor activator inhibitor, a novel Kunitz-type serine protease inhibitor," Journal of Biological Chemistry, vol. 272, no. 10, pp. 6370-6376, 1997.
[58] H. Kataoka et al., "Hepatocyte growth factor activator inhibitor type 1 is a specific cell surface binding protein of hepatocyte growth factor activator (HGFA) and regulates HGFA activity in the pericellular microenvironment," Journal of Biological Chemistry, vol. 275, no. 51, pp. 40453-40462, 2000.
[59] C. Eigenbrot, R. Ganesan, and D. Kirchhofer, "Hepatocyte growth factor activator (HGFA): molecular structure and interactions with HGFA inhibitor-1 (HAI-1)," FEBS Journal, vol. 277, no. 10, pp. 2215-2222, 2010.
[60] B. Fan, T. D. Wu, W. Li, and D. Kirchhofer, "Identification of hepatocyte growth factor activator inhibitor-1B as a potential physiological inhibitor of prostasin," Journal of Biological Chemistry, vol. 280, no. 41, pp. 34513-34520, 2005.
[61] H. Kataoka et al., "Distribution of hepatocyte growth factor activator inhibitor type 1 (HAI-1) in human tissues: cellular surface localization of HAI-1 in simple columnar epithelium and its modulated expression in injured and regenerative tissues," Journal of Histochemistry and Cytochemistry, vol. 47, no. 5, pp. 673-682, 1999.
[62] R. Szabo, A. Molinolo, K. List, and T. H. Bugge, "Matriptase inhibition by hepatocyte growth factor activator inhibitor-1 is essential for placental development," Oncogene, vol. 26, no. 11, pp. 1546-1556, 2007.
[63] T. Kawaguchi et al., "Purification and cloning of hepatocyte growth factor activator inhibitor type 2, a Kunitz-type serine protease inhibitor," Journal of Biological Chemistry, vol. 272, no. 44, pp. 27558-27564, 1997.
[64] H. H. Chang et al., "Differential subcellular localization renders HAI-2 a matriptase inhibitor in breast cancer cells but not in mammary epithelial cells," PLoS One, vol. 10, no. 3, 2015, doi: 10.1371/journal.pone.0120489 .
[65] L. Qin, K. Denda, T. Shimomura, T. Kawaguchi, and N. Kitamura, "Functional characterization of Kunitz domains in hepatocyte growth factor activator inhibitor type 2," Federation of European Biochemical Societies, vol. 436, no. 1, pp. 111-114, 1998.
[66] H. Kataoka et al., "Mouse hepatocyte growth factor (HGF) activator inhibitor type 2 lacking the first kunitz domain potently inhibits the HGF activator," Biochemical and Biophysical Research Communications, vol. 290, no. 3, pp. 1096-1100, 2002.
[67] S. Hwang et al., "Epigenetic silencing of SPINT2 promotes cancer cell motility via HGF-MET pathway activation in melanoma," Journal of Investigative Dermatology, vol. 135, no. 9, pp. 2283-2291, 2015.
[68] W. Dong, X. Chen, J. Xie, P. Sun, and Y. Wu, "Epigenetic inactivation and tumor suppressor activity of HAI-2/SPINT2 in gastric cancer," International Journal of Cancer, vol. 127, no. 7, pp. 1526-1534, 2010.
[69] D. Yue et al., "Epigenetic inactivation of SPINT2 is associated with tumor suppressive function in esophageal squamous cell carcinoma," Experimental Cell Research, vol. 322, no. 1, pp. 149-158, 2014.
[70] Nakamura, "Hepatocyte growth factor activator inhibitors (HAI-1 and HAI-2) are potential targets in uterine leiomyosarcoma," International Journal of Oncology, vol. 37, no. 3, pp. 605-614, 2010.
[71] Nakamura, "Expression of hepatocyte growth factor activator inhibitors (HAI-1 and HAI-2) in ovarian cancer," International Journal of Oncology, vol. 34, no. 2, pp. 345-353, 1992.
[72] M. R. Morris et al., "Tumor suppressor activity and epigenetic inactivation of hepatocyte growth factor activator inhibitor type 2/SPINT2 in papillary and clear cell renal cell carcinoma," American Association for Cancer Research, vol. 65, no. 11, pp. 4598-4606, 2005.
[73] K. Fukai et al., "Hepatocyte growth factor activator inhibitor 2/placental bikunin (HAI-2/PB) gene is frequently hypermethylated in human hepatocellular carcinoma," Cancer Research, vol. 63, no. 24, pp. 8674-8679, 2003.
[74] S. R. Wu et al., "The kunitz domain I of hepatocyte growth factor activator inhibitor-2 inhibits matriptase activity and invasive ability of human prostate cancer cells," Scientific Reports, vol. 7, no. 1, 2017, doi: 10.1038/s41598-017-15415-4.
[75] K. A. Delaria et al., "Characterization of placental bikunin, a novel human serine protease inhibitor," Journal of Biological Chemistry, vol. 272, no. 18, pp. 12209-12214, 1997.
[76] C. J. Wu, X. Feng, M. Lu, S. Morimura, and M. C. Udey, "Matriptase-mediated cleavage of EpCAM destabilizes claudins and dysregulates intestinal epithelial homeostasis," The Journal of Clinical Investigation, vol. 127, no. 2, pp. 623-634, 2017.
[77] R. Szabo, J. P. Hobson, K. Christoph, P. Kosa, K. List, and T. H. Bugge, "Regulation of cell surface protease matriptase by HAI2 is essential for placental development, neural tube closure and embryonic survival in mice," Development, vol. 136, no. 15, pp. 2653-2663, 2009.
[78] P. Heinz-Erian et al., "Mutations in SPINT2 cause a syndromic form of congenital sodium diarrhea," American Journal of Human Genetics, vol. 84, no. 2, pp. 188-196, 2009.
[79] J. Salomon et al., "Genetic characterization of congenital tufting enteropathy: epcam associated phenotype and involvement of SPINT2 in the syndromic form," Human Genetics, vol. 133, no. 3, pp. 299-310, 2014.
[80] K. Kojima and K. Inouye, "Activation of matriptase zymogen," The Journal of Biochemistry, vol. 150, no. 2, pp. 123-125, 2011.
[81] C. Benaud, R. B. Dickson, and C. Y. Lin, "Regulation of the activity of matriptase on epithelial cell surfaces by a blood‐derived factor," European Journal of Biochemistry, vol. 268, no. 5, pp. 1439-1447, 2001.
[82] C. Benaud, M. Oberst, J. P. Hobson, S. Spiegel, R. B. Dickson, and C. Y. Lin, "Sphingosine 1-phosphate, present in serum-derived lipoproteins, activates matriptase," Journal of Biological Chemistry, vol. 277, no. 12, pp. 10539-10546, 2002.
[83] I. C. Tseng et al., "Matriptase activation, an early cellular response to acidosis," Journal of Biological Chemistry, vol. 285, no. 5, pp. 3261-3270, 2010.
[84] J. K. Wang et al., "Matriptase autoactivation is tightly regulated by the cellular chemical environments," PLoS One, vol. 9, no. 4, 2014, doi: 10.1371/journal.pone.0093899.
[85] T. Nakamura, K. Sakai, T. Nakamura, and K. Matsumoto, "Hepatocyte growth factor twenty years on: Much more than a growth factor," Journal of Gastroenterology and Hepatology, vol. 26 Suppl 1, pp. 188-202, 2011.
[86] J. Chmielowiec et al., "c-Met is essential for wound healing in the skin," Journal of Cell Biology, vol. 177, no. 1, pp. 151-162, 2007.
[87] T. Takeuchi, J. L. Harris, W. Huang, K. W. Yan, S. R. Coughlin, and C. S. Craik, "Cellular localization of membrane-type serine protease 1 and identification of protease-activated receptor-2 and single-chain urokinase-type plasminogen activator as substrates," Journal of Biological Chemistry, vol. 275, no. 34, pp. 26333-26342, 2000.
[88] M. D. Oberst et al., "HAI-1 regulates activation and expression of matriptase, a membrane-bound serine protease," American Journal of Physiology Cell Physiology, vol. 289, no. 2, pp. C462-C470, 2005.
[89] Sukmawati Tansil Tan, Ricky Dosan, "Lessons from epithelialization: the reason behind moist wound environment," The Open Dermatology Journal, vol. 13, pp. 34-40, 2019.
[90] Löndahl, Magnus et al., "Hyperbaric oxygen therapy facilitates healing of chronic foot ulcers in patients with diabetes," Diabetes care, vol. 33, no. 5, pp. 998-1003, 2010.
[91] C S Rosenberg, "Wound healing in the patient with diabetes mellitus," Nursing Clinics of North America, vol 25, no. 1, pp. 247-261, 1990.
[92] Natallia Maroz and Richard Simman, "Wound healing in patients with impaired kidney function," Journal of the American College of Clinical Wound Specialists, vol. 5, pp. 2–7, 2013.
[93] Yang R, Wang J, Chen X, Shi Y, Xie J, "Epidermal stem cells in wound healing and regeneration," Stem cells international, vol. 2020, 2020, doi: 10.1155/2020/9148310.
[94] Olivera Stojadinovic, Natalie Yin, Janin Lehmann, Irena Pastar, Robert S. Kirsner, and Marjana Tomic-Canic, "Increased number of langerhans cells in the epidermis of diabetic foot ulcers correlates with healing outcome," Immunologic Research, vol. 57, pp. 222-228, 2013.

電子全文 電子全文(網際網路公開日期:20250702)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top