跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2025/01/26 04:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:羅晨玲
研究生(外文):LUO,CHEN-LING
論文名稱:探討肺炎鏈球菌D39菌株在血清浸潤誘導勝任能力時 絲氨酸/蘇氨酸激酶(StkP)扮演的可能角色
論文名稱(外文):To investigate the role of StkP in Streptococcus pneumoniae D39 strain under sera-induced competence
指導教授:莊依萍
指導教授(外文):Chuang,Yi-Ping
口試委員:張凱誌孫俊仁
口試委員(外文):CHANG, KAI-CHIHSun, Jun-ren
口試日期:2020-05-15
學位類別:碩士
校院名稱:國防醫學院
系所名稱:微生物及免疫學研究所
學門:生命科學學門
學類:微生物學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:53
中文關鍵詞:肺炎鏈球菌勝任階段絲氨酸/蘇氨酸激酶
外文關鍵詞:S. pneumoniaecompetenceSerine/threonine kinase protein
相關次數:
  • 被引用被引用:1
  • 點閱點閱:109
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
目錄 I
致謝 IV
摘要 V
Abstract VII
第一章緒論 1
第一節 肺炎鏈球菌之簡介 1
第二節 肺炎鏈球菌抗藥性與轉型作用 2
第三節 肺炎鏈球菌的勝任階段 3
第四節 絲氨酸/蘇氨酸蛋白激酶 (Serine/threonine-protein kinase) 在肺炎鏈球菌扮演的功能 6
第二章 研究目的與策略 8
第三章 材料與方法 9
第一部分 材料 9
第一節 細菌菌株與使用質體 9
第二節 引子 9
第三節 試藥與培養液/基 9
第四節 特殊配置培養液CDM 9
第二部分 方法 11
第一節 肺炎鏈球菌培養與CDM及分組 11
第二節 肺炎鏈球菌基因突變株、互補株之質體建構 11
第三節 肺炎鏈球菌基因轉型試驗 14
第四節 肺炎鏈球菌同類殘殺(Fratricide)試驗 14
第六節 偵測肺炎鏈球菌生物膜生成 15
第七節 A549黏附試驗 15
第八節 巨噬細胞吞噬肺炎鏈球菌試驗(Phagocytosis) 16
第九節 即時聚合酶連鎖反應(qPCR)定量巨噬細胞黏附之菌數 16
第十節 肺炎鏈球菌青黴素感受性試驗 17
第四章 結果 18
第一節 肺炎鏈球菌D39 stkP突變菌株之建構 18
第二節 肺炎鏈球菌D39 stkP互補補菌株之建構 18
第三節 人體血清藉由stkP基因刺激肺炎鏈球菌進入勝任階段 19
第四節 血清中補體調控肺炎鏈球菌勝任階段 19
第五節 stkP基因調控肺炎鏈球菌生物膜形成 20
第六節 stkP基因調控肺炎鏈球菌對抗巨噬細胞吞噬能力 21
第七節 定量巨噬細胞膜黏附及吞入之肺炎鏈球菌 22
第八節 stkP基因調控肺炎鏈球菌對青黴素之敏感性 22
第五章 討論與結論 23
第六章 參考資料 27
表目錄 35
表一 使用菌株列表 35
表二 本篇論文所用質體列表 36
表三 本篇論文所用引子列表 37
表四 本篇論文所使用之抗生素 38
表五 本篇論文所使用之培養基與培養液 39
表六 Synthetic amino acid詳細成份表 40
圖目錄 41
圖一 肺炎鏈球菌D39 stkP突變菌株之建構 41
圖二 肺炎鏈球菌D39 stkP互補補菌株之建構 42
圖三 人體血清刺激肺炎鏈球菌進入勝任階段 44
圖四 血清中補體促使肺炎鏈球菌轉型作用 45
圖五 在血清條件下stkP基因影響肺炎鏈球菌生物膜形成 47
圖六 在血清條件下stkP基因影響吞噬作用 48
圖七 定量巨噬細胞膜上及細胞內之肺炎鏈球菌 49
圖八 stkP基因影響肺炎鏈球菌對青黴素感受性 50
附圖 51
附圖一 勝任階段調控示意圖 51
附圖二 野生型、stkP-及互補株之青黴素最小抑菌濃度 53


1.Kadioglu A, Weiser JN, Paton JC, Andrew PW. 2008. The role of Streptococcus pneumoniae virulence factors in host respiratory colonization and disease. Nat Rev Microbiol 6:288-301.
2.Weiser JN, Ferreira DM, Paton JC. 2018. Streptococcus pneumoniae: transmission, colonization and invasion. Nat Rev Microbiol 16:355-367.
3.Weiser JN. 2010. The pneumococcus: why a commensal misbehaves. J Mol Med (Berl) 88:97-102.
4.Kolditz M, Ewig S. 2017. Community-Acquired Pneumonia in Adults. Dtsch Arztebl Int 114:838-848.
5.van der Poll T, Opal SM. 2009. Pathogenesis, treatment, and prevention of pneumococcal pneumonia. Lancet 374:1543-56.
6.Gladstone RA, Lo SW, Lees JA, Croucher NJ, van Tonder AJ, Corander J, Page AJ, Marttinen P, Bentley LJ, Ochoa TJ, Ho PL, du Plessis M, Cornick JE, Kwambana-Adams B, Benisty R, Nzenze SA, Madhi SA, Hawkins PA, Everett DB, Antonio M, Dagan R, Klugman KP, von Gottberg A, McGee L, Breiman RF, Bentley SD. 2019. International genomic definition of pneumococcal lineages, to contextualise disease, antibiotic resistance and vaccine impact. EBioMedicine 43:338-346.
7.Peyrani P, Mandell L, Torres A, Tillotson GS. 2019. The burden of community-acquired bacterial pneumonia in the era of antibiotic resistance. Expert Rev Respir Med 13:139-152.
8.Muzzi A, Donati C. 2011. Population genetics and evolution of the pan-genome of Streptococcus pneumoniae. Int J Med Microbiol 301:619-22.
9.Andam CP, Hanage WP. 2015. Mechanisms of genome evolution of Streptococcus. Infect Genet Evol 33:334-42.
10.Straume D, Stamsas GA, Havarstein LS. 2015. Natural transformation and genome evolution in Streptococcus pneumoniae. Infect Genet Evol 33:371-80.
11.Ochman H, Lawrence JG, Groisman EA. 2000. Lateral gene transfer and the nature of bacterial innovation. Nature 405:299-304.
12.Ambur OH, Davidsen T, Frye SA, Balasingham SV, Lagesen K, Rognes T, Tonjum T. 2009. Genome dynamics in major bacterial pathogens. FEMS Microbiol Rev 33:453-70.
13.Wiedenbeck J, Cohan FM. 2011. Origins of bacterial diversity through horizontal genetic transfer and adaptation to new ecological niches. FEMS Microbiol Rev 35:957-76.
14.Popa O, Dagan T. 2011. Trends and barriers to lateral gene transfer in prokaryotes. Curr Opin Microbiol 14:615-23.
15.Salvadori G, Junges R, Morrison DA, Petersen FC. 2019. Competence in Streptococcus pneumoniae and Close Commensal Relatives: Mechanisms and Implications. Front Cell Infect Microbiol 9:94.
16.Lin J, Zhu L, Lau GW. 2016. Disentangling competence for genetic transformation and virulence in Streptococcus pneumoniae. Curr Genet 62:97-103.
17.Seitz P, Blokesch M. 2013. Cues and regulatory pathways involved in natural competence and transformation in pathogenic and environmental Gram-negative bacteria. FEMS Microbiol Rev 37:336-63.
18.de Kievit TR, Iglewski BH. 2000. Bacterial quorum sensing in pathogenic relationships. Infect Immun 68:4839-49.
19.Waters CM, Bassler BL. 2005. Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21:319-46.
20.Li YH, Tang N, Aspiras MB, Lau PC, Lee JH, Ellen RP, Cvitkovitch DG. 2002. A quorum-sensing signaling system essential for genetic competence in Streptococcus mutans is involved in biofilm formation. J Bacteriol 184:2699-708.
21.Claverys JP, Prudhomme M, Martin B. 2006. Induction of competence regulons as a general response to stress in gram-positive bacteria. Annu Rev Microbiol 60:451-75.
22.Prudhomme M, Attaiech L, Sanchez G, Martin B, Claverys JP. 2006. Antibiotic stress induces genetic transformability in the human pathogen Streptococcus pneumoniae. Science 313:89-92.
23.Gagne AL, Stevens KE, Cassone M, Pujari A, Abiola OE, Chang DJ, Sebert ME. 2013. Competence in Streptococcus pneumoniae is a response to an increasing mutational burden. PLoS One 8:e72613.
24.Hui FM, Morrison DA. 1991. Genetic transformation in Streptococcus pneumoniae: nucleotide sequence analysis shows comA, a gene required for competence induction, to be a member of the bacterial ATP-dependent transport protein family. J Bacteriol 173:372-81.
25.Havarstein LS, Coomaraswamy G, Morrison DA. 1995. An unmodified heptadecapeptide pheromone induces competence for genetic transformation in Streptococcus pneumoniae. Proc Natl Acad Sci U S A 92:11140-4.
26.Shanker E, Federle MJ. 2017. Quorum Sensing Regulation of Competence and Bacteriocins in Streptococcus pneumoniae and mutans. Genes (Basel) 8.
27.Johnsborg O, Havarstein LS. 2009. Regulation of natural genetic transformation and acquisition of transforming DNA in Streptococcus pneumoniae. FEMS Microbiol Rev 33:627-42.
28.Steinmoen H, Knutsen E, Havarstein LS. 2002. Induction of natural competence in Streptococcus pneumoniae triggers lysis and DNA release from a subfraction of the cell population. Proc Natl Acad Sci U S A 99:7681-6.
29.Veening JW, Blokesch M. 2017. Interbacterial predation as a strategy for DNA acquisition in naturally competent bacteria. Nat Rev Microbiol 15:621-629.
30.Zhu L, Lin J, Kuang Z, Vidal JE, Lau GW. 2015. Deletion analysis of Streptococcus pneumoniae late competence genes distinguishes virulence determinants that are dependent or independent of competence induction. Mol Microbiol 97:151-65.
31.Oggioni MR, Trappetti C, Kadioglu A, Cassone M, Iannelli F, Ricci S, Andrew PW, Pozzi G. 2006. Switch from planktonic to sessile life: a major event in pneumococcal pathogenesis. Mol Microbiol 61:1196-210.
32.Vidal JE, Howery KE, Ludewick HP, Nava P, Klugman KP. 2013. Quorum-sensing systems LuxS/autoinducer 2 and Com regulate Streptococcus pneumoniae biofilms in a bioreactor with living cultures of human respiratory cells. Infect Immun 81:1341-53.
33.Chao Y, Marks LR, Pettigrew MM, Hakansson AP. 2014. Streptococcus pneumoniae biofilm formation and dispersion during colonization and disease. Front Cell Infect Microbiol 4:194.
34.Bartilson M, Marra A, Christine J, Asundi JS, Schneider WP, Hromockyj AE. 2001. Differential fluorescence induction reveals Streptococcus pneumoniae loci regulated by competence stimulatory peptide. Mol Microbiol 39:126-35.
35.Lin J, Park P, Li H, Oh MW, Dobrucki IT, Dobrucki W, Lau GW. 2020. Streptococcus pneumoniae Elaborates Persistent and Prolonged Competent State during Pneumonia-Derived Sepsis. Infect Immun 88.
36.Zheng Y, Zhang X, Wang X, Wang L, Zhang J, Yin Y. 2017. ComE, an Essential Response Regulator, Negatively Regulates the Expression of the Capsular Polysaccharide Locus and Attenuates the Bacterial Virulence in Streptococcus pneumoniae. Front Microbiol 8:277.
37.Nguyen CT, Park SS, Rhee DK. 2015. Stress responses in Streptococcus species and their effects on the host. J Microbiol 53:741-9.
38.Echenique J, Kadioglu A, Romao S, Andrew PW, Trombe MC. 2004. Protein serine/threonine kinase StkP positively controls virulence and competence in Streptococcus pneumoniae. Infect Immun 72:2434-7.
39.Hirschfeld C, Gomez-Mejia A, Bartel J, Hentschker C, Rohde M, Maass S, Hammerschmidt S, Becher D. 2019. Proteomic Investigation Uncovers Potential Targets and Target Sites of Pneumococcal Serine-Threonine Kinase StkP and Phosphatase PhpP. Front Microbiol 10:3101.
40.Yeats C, Finn RD, Bateman A. 2002. The PASTA domain: a beta-lactam-binding domain. Trends Biochem Sci 27:438.
41.Maestro B, Novakova L, Hesek D, Lee M, Leyva E, Mobashery S, Sanz JM, Branny P. 2011. Recognition of peptidoglycan and beta-lactam antibiotics by the extracellular domain of the Ser/Thr protein kinase StkP from Streptococcus pneumoniae. FEBS Lett 585:357-63.
42.Tamber S, Schwartzman J, Cheung AL. 2010. Role of PknB kinase in antibiotic resistance and virulence in community-acquired methicillin-resistant Staphylococcus aureus strain USA300. Infect Immun 78:3637-46.
43.Beltramini AM, Mukhopadhyay CD, Pancholi V. 2009. Modulation of cell wall structure and antimicrobial susceptibility by a Staphylococcus aureus eukaryote-like serine/threonine kinase and phosphatase. Infect Immun 77:1406-16.
44.Pensinger DA, Aliota MT, Schaenzer AJ, Boldon KM, Ansari IU, Vincent WJ, Knight B, Reniere ML, Striker R, Sauer JD. 2014. Selective pharmacologic inhibition of a PASTA kinase increases Listeria monocytogenes susceptibility to beta-lactam antibiotics. Antimicrob Agents Chemother 58:4486-94.
45.Dias R, Felix D, Canica M, Trombe MC. 2009. The highly conserved serine threonine kinase StkP of Streptococcus pneumoniae contributes to penicillin susceptibility independently from genes encoding penicillin-binding proteins. BMC Microbiol 9:121.
46.Pensinger DA, Schaenzer AJ, Sauer JD. 2018. Do Shoot the Messenger: PASTA Kinases as Virulence Determinants and Antibiotic Targets. Trends Microbiol 26:56-69.
47.Pereira SF, Goss L, Dworkin J. 2011. Eukaryote-like serine/threonine kinases and phosphatases in bacteria. Microbiol Mol Biol Rev 75:192-212.
48.Dworkin J. 2015. Ser/Thr phosphorylation as a regulatory mechanism in bacteria. Curr Opin Microbiol 24:47-52.
49.Saskova L, Novakova L, Basler M, Branny P. 2007. Eukaryotic-type serine/threonine protein kinase StkP is a global regulator of gene expression in Streptococcus pneumoniae. J Bacteriol 189:4168-79.
50.Pinas GE, Reinoso-Vizcaino NM, Yandar Barahona NY, Cortes PR, Duran R, Badapanda C, Rathore A, Bichara DR, Cian MB, Olivero NB, Perez DR, Echenique J. 2018. Crosstalk between the serine/threonine kinase StkP and the response regulator ComE controls the stress response and intracellular survival of Streptococcus pneumoniae. PLoS Pathog 14:e1007118.
51.Fadda D, Pischedda C, Caldara F, Whalen MB, Anderluzzi D, Domenici E, Massidda O. 2003. Characterization of divIVA and other genes located in the chromosomal region downstream of the dcw cluster in Streptococcus pneumoniae. J Bacteriol 185:6209-14.
52.Novakova L, Bezouskova S, Pompach P, Spidlova P, Saskova L, Weiser J, Branny P. 2010. Identification of multiple substrates of the StkP Ser/Thr protein kinase in Streptococcus pneumoniae. J Bacteriol 192:3629-38.
53.Ulrych A, Holeckova N, Goldova J, Doubravova L, Benada O, Kofronova O, Halada P, Branny P. 2016. Characterization of pneumococcal Ser/Thr protein phosphatase phpP mutant and identification of a novel PhpP substrate, putative RNA binding protein Jag. BMC Microbiol 16:247.
54.Fleurie A, Manuse S, Zhao C, Campo N, Cluzel C, Lavergne JP, Freton C, Combet C, Guiral S, Soufi B, Macek B, Kuru E, VanNieuwenhze MS, Brun YV, Di Guilmi AM, Claverys JP, Galinier A, Grangeasse C. 2014. Interplay of the serine/threonine-kinase StkP and the paralogs DivIVA and GpsB in pneumococcal cell elongation and division. PLoS Genet 10:e1004275.
55.Novakova L, Saskova L, Pallova P, Janecek J, Novotna J, Ulrych A, Echenique J, Trombe MC, Branny P. 2005. Characterization of a eukaryotic type serine/threonine protein kinase and protein phosphatase of Streptococcus pneumoniae and identification of kinase substrates. Febs j 272:1243-54.
56.Eldholm V, Johnsborg O, Haugen K, Ohnstad HS, Havarstein LS. 2009. Fratricide in Streptococcus pneumoniae: contributions and role of the cell wall hydrolases CbpD, LytA and LytC. Microbiology 155:2223-34.
57.Hall-Stoodley L, Nistico L, Sambanthamoorthy K, Dice B, Nguyen D, Mershon WJ, Johnson C, Hu FZ, Stoodley P, Ehrlich GD, Post JC. 2008. Characterization of biofilm matrix, degradation by DNase treatment and evidence of capsule downregulation in Streptococcus pneumoniae clinical isolates. BMC Microbiol 8:173.
58.Junges R, Salvadori G, Shekhar S, Åmdal HA, Periselneris JN, Chen T, Brown JS, Petersen FC. 2017. A Quorum-Sensing System That Regulates Streptococcus pneumoniae Biofilm Formation and Surface Polysaccharide Production. mSphere 2.
59.Zhou H, Kobzik L. 2007. Effect of concentrated ambient particles on macrophage phagocytosis and killing of Streptococcus pneumoniae. Am J Respir Cell Mol Biol 36:460-5.
60.Trappetti C, Gualdi L, Di Meola L, Jain P, Korir CC, Edmonds P, Iannelli F, Ricci S, Pozzi G, Oggioni MR. 2011. The impact of the competence quorum sensing system on Streptococcus pneumoniae biofilms varies depending on the experimental model. BMC Microbiol 11:75.
61.Domenech M, García E, Moscoso M. 2012. Biofilm formation in Streptococcus pneumoniae. Microb Biotechnol 5:455-65.
62.Hussain H, Branny P, Allan E. 2006. A eukaryotic-type serine/threonine protein kinase is required for biofilm formation, genetic competence, and acid resistance in Streptococcus mutans. J Bacteriol 188:1628-32.
63.Liu Q, Fan J, Niu C, Wang D, Wang J, Wang X, Villaruz AE, Li M, Otto M, Gao Q. 2011. The eukaryotic-type serine/threonine protein kinase Stk is required for biofilm formation and virulence in Staphylococcus epidermidis. PLoS One 6:e25380.
64.Centers for Disease Control and Prevention. Antibiotic Resistance Threats in the United States, 2019.
65.中華民國衛生福利部.2019. 107年國人死因統計結果
66.中華民國衛生福利部疾病管制署.2019. 侵襲性肺炎鏈球菌感染症
67.中華民國衛生福利部.2016 年台灣肺炎鏈球菌抗藥性監測報告
68.金遠凡(2018)。人體血清促進肺炎鏈球菌勝任能力增加並引發相殘現象。國防醫學院微生物及免疫學研究所碩士論文,台北市。

電子全文 電子全文(網際網路公開日期:20250707)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top