跳到主要內容

臺灣博碩士論文加值系統

(44.192.38.248) 您好!臺灣時間:2022/11/27 01:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳筠絜
研究生(外文):CHEN, YUN-CHIEH
論文名稱:細胞自噬在內毒素誘導肺泡內巨噬細胞細胞凋亡之調控角色
論文名稱(外文):Autophagy regulates apoptosis in LPS induced-alveolar macrophages
指導教授:黃坤崙黃坤崙引用關係
指導教授(外文):HUANG,KUN-LUN
口試委員:唐士恩藍冑進黃坤崙
口試委員(外文):TANG,SHIH-ENLAN,CHOU-CHINHUANG,KUN-LUN
口試日期:2020-05-08
學位類別:碩士
校院名稱:國防醫學院
系所名稱:航太及海底醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:108
中文關鍵詞:細胞自噬細胞凋亡肺泡內巨噬細胞
外文關鍵詞:AutophagyApoptosisalveolar macrophage
相關次數:
  • 被引用被引用:0
  • 點閱點閱:115
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
急性呼吸窘迫症候群是為臨床上死亡率極高的疾病,而目前並無有效治療方式。在急性呼吸窘迫症候群病情演變過程中,肺泡內巨噬細胞扮演極為重要的調控角色,始自接觸到病原體後,轉變為M1發炎型巨噬細胞,分泌許多促發炎細胞激素,促進後續發炎反應,發炎反應後期肺泡內巨噬細胞轉變成M2抗發炎型巨噬細胞,清除肺泡中壞死的細胞,而過度發炎反應卻會導致肺泡內巨噬細胞細胞凋亡。另外一方面,細胞自噬為細胞自身透過溶酶體分解機制,清除細胞中失去功能的胞器與蛋白質。過去研究顯示,細胞自噬在不同成因引起肺部損傷具有保護作用,本實驗主要探討在內毒素引起急性損傷模式下,內毒素對於肺泡巨噬細胞細胞自噬的影響,以及細胞自噬是否會泡巨噬細胞細胞凋亡。結果顯示,內毒素增加肺泡內巨噬細胞細胞自噬,而增加細胞自噬能增加肺泡內巨噬細胞粒線體ATP產量,進而抑制細胞凋亡,但後續相關機制探討,仍需後續實驗做進一步確認。
Acute Respiratory Distress Syndrome (ARDS) is a clinically common disease featuring with high mortality rate. During acute stage of pathological progression, alveolar macrophages play an important role in initiating the inflammatory response by releasing pro-inflammatory cytokines as well as recruiting monocytes and neutrophils into the alveolar space. In the resolution stage, alveolar macrophages shift to M2 type macrophages, inhibit the inflammatory response by phagocytizing cell debris and releasing anti-inflammatory cytokines.On the other hand, autophagy is an intracellular lysosome mechanism which removes the dysfunctional components or misfolded proteins. Recent studies have shown that autophagy may affect the alveolar macrophage, further influence the development of ARDS. Therefore, the main propose of this study is to examine the effect of LPS on alveolar macrophage autophagy and autophagy on LPS-induced alveolar macrophage activation. Our result showed that LPS increase the autophagy in alveolar macrophage, and rapamycin-induced autophagy can certainly reduce the apoptosis in alveolar macrophage by increase the ATP production in mitochrondria.
圖表目錄 .....II
中文摘要 .....IV
Abstract......V
第一章 緒論....1
第二章 材料與方法....13
第三章 實驗結果......25
第四章 討論..........50
參考資料.............98


1.Bellani, G., Laffey, J., Pham, T., Fan, E., Brochard, L., & Esteban, A. et al. (2016). Epidemiology, Patterns of Care, and Mortality for Patients With Acute Respiratory Distress Syndrome in Intensive Care Units in 50 Countries. JAMA, 315(8), 788.
2.Thompson, B., Chambers, R., & Liu, K. (2017). Acute Respiratory Distress Syndrome. New England Journal Of Medicine, 377(6), 562-572.
3.McNicholas, B., Rooney, G., & Laffey, J. (2018). Lessons to learn from epidemiologic studies in ARDS. Current Opinion In Critical Care, 24(1), 41-48.
4.Ranieri V et al. (2012).Acute Respiratory Distress Syndrome. JAMA, 307(23).
5.Luo, L., Shaver, C., Zhao, Z., Koyama, T., Calfee, C., Bastarache, J., & Ware, L. (2017). Clinical Predictors of Hospital Mortality Differ Between Direct and Indirect ARDS. Chest, 151(4), 755-763.
6.Murphy, E., & Roubinian, N. (2015). Transfusion-associated circulatory overload (TACO): prevention, management, and patient outcomes. International Journal Of Clinical Transfusion Medicine, 17.
7.Walkey, A., Summer, Ho, & Alkana. (2012). Acute respiratory distress syndrome: epidemiology and management approaches. Clinical Epidemiology, 159.
8.Gouda, M., Shaikh, S., & Bhandary, Y. (2018). Inflammatory and Fibrinolytic System in Acute Respiratory Distress Syndrome. Lung, 196(5), 609-616.
9.Jabbari A, et al. (2013). Lung protection strategy as an effective treatment in acute respiratory distress syndrome. Caspian J Intern Med 2013; 4(1): 560-563
10.Nova, Z., Skovierova, H., & Calkovska, A. (2019). Alveolar-Capillary Membrane-Related Pulmonary Cells as a Target in Endotoxin-Induced Acute Lung Injury. International Journal Of Molecular Sciences, 20(4), 831.
11.Huang, X., Xiu, H., Zhang, S., & Zhang, G. (2018). The Role of Macrophages in the Pathogenesis of ALI/ARDS. Mediators Of Inflammation, 2018, 1-8.
12.He, X., Qian, Y., Li, Z., Fan, E., Li, Y., & Wu, L. et al. (2016). TLR4-Upregulated IL-1β and IL-1RI Promote Alveolar Macrophage Pyroptosis and Lung Inflammation through an Autocrine Mechanism. Scientific Reports, 6(1).
13.Xaus, J., Comalada, M., Valledor, A., Lloberas, J., López-Soriano, F., & Argilés, J. et al. (2000). LPS induces apoptosis in macrophages mostly through the autocrine production of TNF-α. Blood, 95(12), 3823-3831.
14.Behar, S., Martin, C., Booty, M., Nishimura, T., Zhao, X., & Gan, H. et al. (2011). Apoptosis is an innate defense function of macrophages against Mycobacterium tuberculosis. Mucosal Immunology, 4(3), 279-287.
15.Robb, C., Regan, K., Dorward, D., & Rossi, A. (2016). Key mechanisms governing resolution of lung inflammation. Seminars In Immunopathology, 38(4), 425-448.
16.Levy, B., & Serhan, C. (2014). Resolution of Acute Inflammation in the Lung. Annual Review Of Physiology, 76(1), 467-492.
17.F. G. Eyal, C. R. Hamm, and J. C. Parker, “Reduction in alveolar macrophages attenuates acute ventilator induced lung injury in rats,” Intensive Care Medicine, vol. 33, no. 7, pp. 1212–1218, 2007.
18.Allard, B., Panariti, A., & Martin, J. (2018). Alveolar Macrophages in the Resolution of Inflammation, Tissue Repair, and Tolerance to Infection. Frontiers In Immunology, 9.
19.Machado-Aranda, D., V. Suresh, M., Yu, B., Dolgachev, V., Hemmila, M., & Raghavendran, K. (2014). Alveolar macrophage depletion increases the severity of acute inflammation following nonlethal unilateral lung contusion in mice. Journal Of Trauma And Acute Care Surgery, 76(4), 982-990.
20.Narasaraju, T., Yang, E., Samy, R., Ng, H., Poh, W., & Liew, A. et al. (2011). Excessive Neutrophils and Neutrophil Extracellular Traps Contribute to Acute Lung Injury of Influenza Pneumonitis. The American Journal Of Pathology, 179(1), 199-210.
21.Hansen, M., Rubinsztein, D., & Walker, D. (2018). Autophagy as a promoter of longevity: insights from model organisms. Nature Reviews Molecular Cell Biology, 19(9), 579-593.
22.Chen P, Cescon M, Bonaldo P. Autophagy-mediated regulation of macrophages and its applications for cancer. Autophagy. 2014;10(2):192–200.
23.Rubinsztein, D., Shpilka, T., & Elazar, Z. (2012). Mechanisms of Autophagosome Biogenesis. Current Biology, 22(1), R29-R34.
24.Carlsson, S., & Simonsen, A. (2015). Membrane dynamics in autophagosome biogenesis. Journal Of Cell Science, 128(2), 193-205.
25.Johansen, T., & Lamark, T. (2020). Selective Autophagy: ATG8 Family Proteins, LIR Motifs and Cargo Receptors. Journal Of Molecular Biology, 432(1), 80-103.
26.Badadani, M. (2012). Autophagy Mechanism, Regulation, Functions, and Disorders. ISRN Cell Biology, 2012, 1-11.
27.Qiu, P., Liu, Y., & Zhang, J. (2018). Review: the Role and Mechanisms of Macrophage Autophagy in Sepsis. Inflammation, 42(1), 6-19.
28.Rubinstein, A., & Kimchi, A. (2012). Life in the balance – a mechanistic view of the crosstalk between autophagy and apoptosis. Journal Of Cell Science, 125(22), 5259-5268.
29.Tanaka, A., Y. Jin, S.J. Lee, M. Zhang, H.P. Kim, D.B. Stolz, S.W. Ryter, and A.M.K. Choi. 2012. Hyperoxia-induced LC3B interacts with the Fas apoptotic pathway in epithelial cell death. American Journal of Respiratory Cell and Molecular Biology 46 (4): 507–514.
30.Qiu, P., Liu, Y., & Zhang, J. (2018). Review: the Role and Mechanisms of Macrophage Autophagy in Sepsis. Inflammation, 42(1), 6-19.
31.Chen, H., Chuang, Y., Chao, C., & Yeh, T. (2015). Macrophage migration inhibitory factor induces vascular leakage via autophagy. Biology Open, 4(2), 244-252.
32.Liu, H., Zhou, K., Liao, L., Zhang, T., Yang, M., & Sun, C. (2018). Lipoxin A4 receptor agonist BML-111 induces autophagy in alveolar macrophages and protects from acute lung injury by activating MAPK signaling. Respiratory research, 19(1).
33.McIlwain, D., Berger, T., & Mak, T. (2013). Caspase Functions in Cell Death and Disease. Cold Spring Harbor Perspectives In Biology, 5(4), a008656-a008656. doi: 10.1101/cshperspect.a008656
34.Westphal, D., Dewson, G., Czabotar, P., & Kluck, R. (2011). Molecular biology of Bax and Bak activation and action. Biochimica Et Biophysica Acta (BBA) - Molecular Cell Research, 1813(4), 521-531.
35.Zhang, Y., Wu, J., Ying, S., Chen, G., Wu, B., & Xu, T. et al. (2016). Discovery of new MD2 inhibitor from chalcone derivatives with anti-inflammatory effects in LPS-induced acute lung injury. Scientific Reports, 6(1). doi: 10.1038/srep25130
36.Waltz, P., Carchman, E., Young, A., Rao, J., Rosengart, M., Kaczorowski, D., & Zuckerbraun, B. (2011). Lipopolysaccaride induces autophagic signaling in macrophages via a TLR4, heme oxygenase-1 dependent pathway. Autophagy, 7(3), 315-320. (Waltz et al., 2011)
37.Wang, J., Wu, M., Su, H., Lu, J., Chen, X., Tan, J., & Lu, J. (2019). iNOS Interacts with Autophagy Receptor p62 and is Degraded by Autophagy in Macrophages. Cells, 8(10), 1255.
38.Chen, C., Deng, M., Sun, Q., Loughran, P., Billiar, T., & Scott, M. (2014). Lipopolysaccharide Stimulates p62-Dependent Autophagy-Like Aggregate Clearance in Hepatocytes. Biomed Research International, 2014, 1-13.
39.Yoshii, S., & Mizushima, N. (2017). Monitoring and Measuring Autophagy. International Journal Of Molecular Sciences, 18(9), 1865.
40.Demchenko, A. (2012). Beyond annexin V: fluorescence response of cellular membranes to apoptosis. Cytotechnology, 65(2), 157-172. doi: 10.1007/s10616-012-9481-y
41.LJ Bendall, DR Green. (2014). Autopsy of a cell. Leukemia , 28, 1341 – 1379.
42.Annexin-V and Autophagy - Flow Cytometry Core Facility. (2020). http://www.icms.qmul.ac.uk/flowcytometry/uses/autophagy/annexinv/index.html
43.Redmann, M., Benavides, G., Wani, W., Berryhill, T., Ouyang, X., & Johnson, M. et al. (2018). Methods for assessing mitochondrial quality control mechanisms and cellular consequences in cell culture. Redox Biology, 17, 59-69.
44.Pan, P., Zhang, H., Su, L., Wang, X., & Liu, D. (2018). Melatonin Balance the Autophagy and Apoptosis by Regulating UCP2 in the LPS-Induced Cardiomyopathy. Molecules, 23(3), 675.
45.Teh, J., Zhu, W., Newgard, C., Casey, P., & Wang, M. (2019). Respiratory Capacity and Reserve Predict Cell Sensitivity to Mitochondria Inhibitors: Mechanism-Based Markers to Identify Metformin-Responsive Cancers. Molecular Cancer Therapeutics, 18(3), 693-705.
46.Wang. et al. (2015). Rapamycin, an mTOR inhibitor, induced apoptosis via independent mitochondrial and death receptor pathway in retinoblastoma Y79 cell. Int J Clin Exp Med. d 2015;8(7):10723-10730.
47.Decleer, M., Jovanovic, J., Vakula, A., Udovicki, B., Agoua, R., & Madder, A. et al. (2018). Oxygen Consumption Rate Analysis of Mitochondrial Dysfunction Caused by Bacillus cereus Cereulide in Caco-2 and HepG2 Cells. Toxins, 10(7), 266.
48.Amiel, E., Everts, B., Fritz, D., Beauchamp, S., Ge, B., Pearce, E., & Pearce, E. (2014). Mechanistic Target of Rapamycin Inhibition Extends Cellular Lifespan in Dendritic Cells by Preserving Mitochondrial Function. The Journal Of Immunology, 193(6), 2821-2830.
49.Teh, J., Zhu, W., Newgard, C., Casey, P., & Wang, M. (2019). Respiratory Capacity and Reserve Predict Cell Sensitivity to Mitochondria Inhibitors: Mechanism-Based Markers to Identify Metformin-Responsive Cancers. Molecular Cancer Therapeutics, 18(3), 693-705.
50.Trotta, A., Gelles, J., Serasinghe, M., Loi, P., Arbiser, J., & Chipuk, J. (2017). Disruption of mitochondrial electron transport chain function potentiates the pro-apoptotic effects of MAPK inhibition. Journal Of Biological Chemistry, 292(28), 11727-11739.
51.Rainey, N., Saric, A., Leberre, A., Dewailly, E., Slomianny, C., & Vial, G. et al. (2017). Synergistic cellular effects including mitochondrial destabilization, autophagy and apoptosis following low-level exposure to a mixture of lipophilic persistent organic pollutants. Scientific Reports, 7(1).
52.Nguyen, C., & Pandey, S. (2019). Exploiting Mitochondrial Vulnerabilities to Trigger Apoptosis Selectively in Cancer Cells. Cancers, 11(7), 916.
53.Kamalian, L., Douglas, O., Jolly, C., Snoeys, J., Simic, D., & Monshouwer, M. et al. (2018). The utility of HepaRG cells for bioenergetic investigation and detection of drug-induced mitochondrial toxicity. Toxicology In Vitro, 53, 136-147.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 以一種新穎的凝集素 (RussiaSea-001)鑑別 IgA腎病變異常 O-聯結醣基化之 IgA1
2. 探討Carvedilol 對腹主動脈瘤動物模式之療效評估
3. 4-Acetylantroquinonol B 透過抑制自噬作用路徑減緩模擬微重力環境下蝕骨細胞分化及侵蝕功能
4. 高氧暴露抑制人類小呼吸道上皮細胞之增殖和緊密連接蛋白表現量, 增進抗氧化基因和NOTCH3訊號基因之表現量, 並對不同的冠狀和流感病毒入侵基因造成差異性
5. 小GTPase Rab37對Formosanin C誘導之細胞自噬在肺癌細胞中的角色
6. 合併使用α-lipoic acid及genistein改善卵巢切除鼠誘導肥胖之療效及機轉探討-細胞自噬調控脂肪棕色化扮演之角色
7. 順應性支持通氣模式可降低呼吸器引發之肺損傷
8. Fenofibrate促進結核分枝桿菌細胞內感染-機轉和臨床預後
9. 利用小鼠模式探討GLP-1藥物 對肥胖與非肥胖者的代謝差異
10. 高壓氧暴露改變人類小呼吸道上皮細胞之細胞黏著分子、幹細胞標記和抗氧化基因、細胞週期與凋亡調控基因以及冠狀和流感病毒入侵基因之表現量
11. 探討牛樟芝粗萃取物對於非酒精性脂肪肝病的影響與致病機轉
12. Rab18蛋白在神經細胞自噬中的重要性及Warburg Micro Syndrome的致病機轉
13. 分泌型細胞自噬體在登革病毒蛋白及高遷移率族蛋白B1的表現中所扮演的角色
14. 利用細胞自噬圖譜預測能調控細胞自噬的中草藥
15. 斯鈣素-1減緩脂多醣體所引起小鼠肺部氧化壓力與急性肺損傷