跳到主要內容

臺灣博碩士論文加值系統

(44.192.95.161) 您好!臺灣時間:2024/10/16 02:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳庚欽
研究生(外文):WU,GENG-CHIN
論文名稱:Melatonin受體促效劑及Nicotinamide phosphoribosyltransferase抑制劑在急性肺損傷的保護作用及其保護機轉
論文名稱(外文):The protective effect and the protective mechanism of melatonin receptor agonist and nicotinamide phosphoribosyltransferase inhibitor in acute lung injury
指導教授:朱士傑朱士傑引用關係
指導教授(外文):CHU,SHI-JYE
口試委員:黃坤崙林恆毅許金旺蔡適鴻
口試委員(外文):HUANG,KUN-LUNLIN,HEN-IHSU,CHIN-WANGTSAI,SHIH-HUNG
口試日期:2020-04-23
學位類別:博士
校院名稱:國防醫學院
系所名稱:醫學科學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:97
中文關鍵詞:急性肺損傷呼吸器導致肺損傷缺血再灌流引發急性肺損傷菸鹼胺磷酸核糖基轉移酶褪黑激素受體褪黑激素受體促效劑白介素10
外文關鍵詞:Acute lung injuryventilator-induced lung injuryischemia-reperfusion lung injurynicotinamide phosphoribosyltransferasemelatonin receptormelatonin receptor agonistinterleukin-10
相關次數:
  • 被引用被引用:0
  • 點閱點閱:125
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
在重症患者中,急性肺損傷(ALI)或急性呼吸窘迫症候群(ARDS)是一種常見的併發症,並導致嚴重的合併症和死亡率。然而,至目前為止,急性呼吸窘迫症候群的藥物治療仍不盡理想。氧化壓力(oxidative stress),細胞激素(cytokines)和細胞凋亡(apoptosis)在急性肺損傷或急性呼吸窘迫症候群的病理機轉佔有重要的角色。嗜中性球(Neutrophils)是引起急性肺損傷的關鍵角色。
菸鹼胺磷酸核糖基轉移酶(Nicotinamide phosphoribosyltransferase ;NAMPT)具有調節細胞信息傳遞(cellular signaling),嗜中性球浸潤,細胞凋亡,氧化壓力和發炎反應的功能。NAMPT被證明是急性肺損傷或急性呼吸窘迫症候群中潛在的新穎生物標記。根據我們的研究發現,NAMPT酶的功能抑製劑FK866在缺血再灌流引發急性肺損傷中具有保護作用。我們證實FK866可以減少肺水腫,發炎細胞激素的產生,嗜中性球浸潤,活性氧化物質(reactive oxygen species)的產生,細胞凋亡的產生及抑制NFκB signaling及MAPK signaling的活化。
褪黑激素(Melatonin)具有多種特性,包括抗細胞凋亡,抗氧化和抗發炎特性。但是,尚不清楚褪黑激素受體促效劑(melatonin receptor agonist)是否在呼吸器導致肺損傷(ventilator-induced lung injury, VILI)中起重要作用。因此,我們將進一步確定褪黑激素受體促效劑在VILI中的角色,並探討可能的保護機制。在我們的研究顯示,呼吸器導致肺損傷顯著增加了肺水腫,嗜中性球浸潤,發炎細胞激素的產生,氧化壓力,細胞凋亡,IκB-α的降解,NF-κB的細胞核遷移(nuclear translocation)以及組織損傷。而透過褪黑激素或褪黑激素受體促效劑(melatonin receptor agonist, Ramelteon)治療可大大減輕這些影響。然而,褪黑激素或Ramelteon的保護作用會被Luzindole(褪黑激素受體拮抗劑melatonin receptor antagonist)所阻斷。
此外,褪黑激素或Ramelteon在呼吸機引發肺損傷中會誘導IL-10表現增加,而此作用是經由褪黑激素受體,因為使用Luzindole可以消除這些保護作用。當我們給予抗IL-10抗體(anti-IL-10 antibody)時,會抵消褪黑激素和Ramelteon對呼吸器導致肺損傷的保護作用,這表明褪黑激素受體促效劑是藉由上調IL-10的產生,改善呼吸器導致的肺損傷。


關鍵詞:急性肺損傷;呼吸器導致肺損傷;缺血再灌流引發急性肺損傷;菸鹼胺磷酸核糖基轉移酶;褪黑激素受體;褪黑激素受體促效劑;白介素10


Acute lung injury (ALI) or acute respiratory distress syndrome (ARDS) is a relatively frequent complication in critically ill patients and is responsible for significant co-morbidity and mortality. However, effective pharmacological therapies have not yet been identified for ARDS. Oxidative stress, cytokines, and apoptosis have significant contribution in the pathogenesis of ALI/ARDS. Neutrophils are key players in ALI.
Nicotinamide phosphoribosyltransferase (NAMPT) regulate cellular signaling, neutrophils infiltration, apoptosis, oxidative stress response, and inflammation. NAMPT was demonstrated as a potential novel biomarker in ALI/ARDS. In our study, FK866, an inhibitor of NAMPT enzymatic function, had beneficial effects in ischemia-reperfusion (I/R)-induced acute lung injury. We demonstrated that FK866 attenuated lung I/R injury by decreasing lung edema, production of inflammatory cytokines, neutrophils infiltration, reactive oxygen species, apoptosis, and NFκB and MAPK signaling.
Melatonin has multiple properties, including anti-apoptotic, anti-oxidative, and anti-inflammatory properties. However, it is not clear whether melatonin receptor agonist play an important role in ventilator-induced lung injury (VILI). Therefore, we determined the role of melatonin receptor agonist in VILI and explore the possible mechanism for protection. In our study, VILI significantly increased lung edema, neutrophil infiltration, inflammatory cytokine production, oxidative stress, apoptosis, IκB-α degradation, nuclear translocation of NF-κB, and tissue injury. These effects were significantly attenuated by treatment with melatonin or ramelteon (melatonin receptor agonist). However, the protective effect of melatonin or ramelteon was blocked by the administration of luzindole (melatonin receptor antagonist).
Additionally, melatonin- or ramelteon-induced IL-10 expression in VILI was mediated by melatonin receptors since luzindole treatment abrogates the effect. When we administered an anti-IL-10 antibody, the protective effects of melatonin and ramelteon against VILI were abrogated, which indicated that melatonin receptors upregulated IL-10 production and improved VILI.


Keywords: Acute lung injury; ventilator-induced lung injury; ischemia-reperfusion lung injury; nicotinamide phosphoribosyltransferase; melatonin receptor; melatonin receptor agonist; interleukin-10


CONTENTS
Contents I
List of Table and Figure IV
Abstract in Chinses VI
Abstract in English VIII
INTRODUCTION
■Acute lung injury 1
■Ischemia reperfusion lung injury 3
■Ventilator-induced lung injury 4
■Role of nicotinamide phosphoribosyltransferase in ALI 5
■Role of melatonin receptors in ALI 8
■IL-10 in lung injury 9
■Relationship between melatonin and IL-10 10
■Aims and objectives of this study 11
METHODS
■Animals 13
■Isolated perfused rat lung model 13
■Experimental design of study 1 14
■Experimental design of study 2 15
■Hypoxia-reoxygenation (H/R)of A549 cells 17
■Vascular filtration coefficient 17
■Arterial blood gas analysis 18
■Measurement of the lung weight/body weight (LW/BW) and wet/dry (W/D)
weight ratios 18
■Histopathological analysis 19
■Determination of serum malondialdehyde (MDA) 19
■Protein carbonyl content in lung tissue 20
■Immunohistochemical analyses 20
■Measurement of protein and cytokine levels in BALF 20
■Immunoblotting 21
■Statistical analysis 22
RESULTS
Study 1.Evaluation of the protective effect and mechanism of action of the NAMPT inhibitor FK866 on I/R lung injury in rats 23
■Effect of FK866 on indices of lung edema 23
■Effect of FK866 on PAP 23
■Effect of FK866 on NAMPT protein expression in lung tissue 24
■Effect of FK866 on CINC-1, TNF-α, and IL-6 concentrations, and total
cell counts in the BALF 24
■Effect of FK866 on the carbonyl content, malondialdehyde level, and
numbers of MPO-positive cells in lung tissue 25
■Effect of FK866 on lung pathology 25
■Effects of FK866 on Bcl-2 and caspase-3 protein expression in lung
tissue 25
■Effect of FK866 on the mitogen-activated protein kinase (MAPK)
signaling pathway and MKP-1 in lung tissue 26
■Effect of FK866 on the NF-κB signaling pathway 26
■Effect of FK866 in A549 epithelial cells subjected to H/R 27
Study 2. Protective effect and mechanism of action of melatonin receptor agonists on VILI in rats 27
■Effect of melatonin and ramelteon on oxygenation 27
■Effect of melatonin and ramelteon on lung edema 28
■Effect of melatonin and ramelteon on serum MDA and the carbonyl
content and MPO-positive cell in lung tissue 28
■Effect of melatonin and ramelteon on TNF-α, IL-1β, IL-6, and
CXCL-1 concentrations in BALF 29
■Effect of melatonin and ramelteon on IL-10 and STAT3 expression 29
■Effect of melatonin and ramelteon on iNOS expression 30
■Effect of melatonin and ramelteon on lung pathology 30
■Effect of melatonin and ramelteon on the NF-κB signaling pathway 30
■Effect of melatonin and ramelteon on apoptosis 31
■Effect of an anti-IL-10 antibody on the ability of melatonin and
ramelteon to prevent VILI-induced changes in IL-10 in BALF 31
■Effect of an anti-IL-10 antibody on the ability of melatonin and
ramelteon to prevent VILI-induced lung edema 32
■Effect of an anti-IL-10 antibody on the ability of melatonin and
ramelteon to prevent VILI-induced changes in cytokine
concentrations in BALF 32
■Effect of an anti-IL-10 antibody on the ability of melatonin and
ramelteon to prevent VILI-induced pathology 33
■Effect of an anti-IL-10 antibody on the ability of melatonin and
ramelteon to prevent VILI-induced apoptosis and NF-κB signaling
pathway activation 34
DISCUSSION 35
CONCLUSIONS 51
TABLE and FIGURES 52
REFERENCES 77
List of Table and Figures
■Table 1. Effect of melatonin and ramelteon on oxygenation 52
■Figure 1. Effect of FK866 on pulmonary edema 53
■Figure 2. Effect of FK866 on pulmonary artery pressure (ΔPAP) 54
■Figure 3. Effect of FK866 on NAMPT protein expression in lung tissue 55
■Figure 4. Effect of FK866 on CINC-1, TNF-α, and IL-6 levels, and total
cell counts in bronchoalveolar lavage fluid (BALF) 56
■Figure 5. Effect of FK866 on protein carbonyl contents, MDA levels, and
numbers of MPO-positive cells in lung tissue 57
■Figure 6. Effect of FK866 on lung pathology 58
■Figure 7. Effect of FK866 on the expression of caspase-3 and Bcl-2 in lung
tissue 59
■Figure 8. Effect of FK866 on MAPK and MKP-1 expressions in lung tissue 60
■Figure 9. Effect of FK866 on NF-κB activation and Akt phosphorylation in
lung tissues 61
■Figure 10. Effect of FK866 on A549 cells subjected to
hypoxia-reoxygenation 62
■Figure 11. Effect of melatonin and ramelteon on lung edema 63
■Figure 12. Effect of melatonin and ramelteon on serum malondialdehyde (MDA)
levels, carbonyl content and myeloperoxidase (MPO)-positive cell numbers in
lung tissue 64
■Figure 13. Effect of melatonin and ramelteon on TNF-α, IL-1β, IL-6, and
CXCL-1 concentrations in BALF 65
■Figure 14. Effect of melatonin and ramelteon on IL-10 levels in BALF and
STAT3 expression in the lung tissue 66
■Figure 15. Effect of melatonin and ramelteon on iNOS expression. iNOS
levels in the lung tissue 67
■Figure 16. Effect of melatonin and ramelteon on lung pathology 68
■Figure 17. Effect of melatonin and ramelteon on the NF-κB signaling
pathway 69
■Figure 18. Effect of melatonin and ramelteon on apoptosis 70
■Figure 19. Effect of an anti-IL-10 antibody on melatonin-and
ramelteon-mediated BALF IL-10 levels 71
■Figure 20.Effect of anti-IL-10 antibody on melatonin- and
ramelteon-mediated VILI protection against lung edema. 72
■Figure 21. Effect of an anti-IL-10 antibody on the melatonin- and
ramelteon-mediated cytokines concentrations in BALF 73
■Figure 22. Effect of an anti-IL-10 antibody on the melatonin-and
ramelteon-mediated lung pathology 74
■Figure 23. Effect of an anti-IL-10 antibody on the melatonin-and
ramelteon-mediated apoptosis and NF-κB signaling pathway 75
■Supplemental Figure 1.Effect of vehicle on the VILI-mediated lung injury 76



1.Matthay MA, McAuley DF, Ware LB: Clinical trials in acute respiratory
distress syndrome: challenges and opportunities. Lancet Respir Med. 5:524-
534,2017.
2.Ware LB, Matthay MA: The acute respiratory distress syndrome. N Engl J Med.
342:1334-1349,2000.
3.Rubenfeld GD, Caldwell E, Peabody E, Weaver J, Martin DP, Neff M, Stern EJ,
Hudson LD: Incidence and outcomes of acute lung injury. N Engl J Med.
353:1685-1693,2005.
4.Webster NR, Cohen AT, Nunn JF: Adult respiratory distress syndrome--how many
cases in the UK? Anaesthesia. 43:923-926,1988.
5.Luhr OR, Antonsen K, Karlsson M, Aardal S, Thorsteinsson A, Frostell CG,
Bonde J: Incidence and mortality after acute respiratory failure and acute
respiratory distress syndrome in Sweden, Denmark, and Iceland. The ARF Study
Group. Am J Respir Crit Care Med. 159:1849-1861, 1999.
6.Phua J, Badia JR, Adhikari NK, Friedrich JO, Fowler RA, Singh JM, Scales DC,
Stather DR, Li A, Jones A, et al: Has mortality from acute respiratory
distress syndrome decreased over time?: A systematic review. Am J Respir
Crit Care Med. 179:220-227, 2009.
7.Bunnell E, Pacht ER: Oxidized glutathione is increased in the alveolar fluid
of patients with the adult respiratory distress syndrome. Am Rev Respir Dis.
148:1174-1178, 1993.
8.Matthay MA, Geiser T, Matalon S, Ischiropoulos H: Oxidant-mediated lung
injury in the acute respiratory distress syndrome. Crit Care Med. 27:2028-
2030, 1999.
9.Carpenter CT, Price PV, Christman BW: Exhaled breath condensate isoprostanes
are elevated in patients with acute lung injury or ARDS. Chest. 114:1653-
1659,1998.
10.Quinlan GJ, Lamb NJ, Tilley R, Evans TW, Gutteridge JM: Plasma hypoxanthine
levels in ARDS: implications for oxidative stress, morbidity, and
mortality. Am J Respir Crit Care Med.155:479-484, 1997.
11.Brigham KL: Role of free radicals in lung injury. Chest. 89:859-863, 1986.
12.Rinaldo JE: Mediation of ARDS by leukocytes. Clinical evidence and
implications for therapy. Chest. 89:590-593, 1986.
13.Zemans RL, Colgan SP, Downey GP: Transepithelial migration of neutrophils:
mechanisms and implications for acute lung injury. Am J Respir Cell Mol
Biol. 40:519-535, 2009.
14.Dushianthan A, Grocott MP, Postle AD, Cusack R: Acute respiratory distress
syndrome and acute lung injury. Postgrad Med J. 87:612-622, 2011.
15.Kellner M, Noonepalle S, Lu Q, Srivastava A, Zemskov E, Black SM: ROS
Signaling in the Pathogenesis of Acute Lung Injury (ALI) and Acute
Respiratory Distress Syndrome (ARDS). Adv Exp Med Biol. 967:105-137, 2017.
16.Steinberg KP, Hudson LD, Goodman RB, Hough CL, Lanken PN, Hyzy R, Thompson
BT, Ancukiewicz M: Efficacy and safety of corticosteroids for persistent
acute respiratory distress syndrome. N Engl J Med. 354:1671-1684, 2006.
17.Abraham E, Baughman R, Fletcher E, Heard S, Lamberti J, Levy H, Nelson L,
Rumbak M, Steingrub J, Taylor J, et al: Liposomal prostaglandin E1 (TLC C-
53) in acute respiratory distress syndrome: a controlled, randomized,
double-blind, multicenter clinical trial. TLC C-53 ARDS Study Group. Crit
Care Med. 27:1478-1485, 1999.
18.Bone RC, Slotman G, Maunder R, Silverman H, Hyers TM, Kerstein MD, Ursprung
JJ: Randomized double-blind, multicenter study of prostaglandin E1 in
patients with the adult respiratory distress syndrome. Prostaglandin E1
Study Group. Chest. 96:114-119, 1989.
19.Sokol J, Jacobs SE, Bohn D: Inhaled nitric oxide for acute hypoxic
respiratory failure in children and adults: a meta-analysis. Anesth Analg.
97:989-998, 2003.
20.Kesecioglu J, Beale R, Stewart TE, Findlay GP, Rouby JJ, Holzapfel L,
Bruins P, Steenken EJ, Jeppesen OK, Lachmann B: Exogenous natural
surfactant for treatment of acute lung injury and the acute respiratory
distress syndrome. Am J Respir Crit Care Med. 180:989-994, 2009.
21.Ketoconazole for early treatment of acute lung injury and acute respiratory
distress syndrome: a randomized controlled trial. The ARDS Network. Jama.
283:1995-2002, 2000.
22.Adhikari N, Burns KE, Meade MO: Pharmacologic therapies for adults with
acute lung injury and acute respiratory distress syndrome. Cochrane
Database Syst Rev. Cd004477, 2004.
23.Bream-Rouwenhorst HR, Beltz EA, Ross MB, Moores KG: Recent developments in
the management of acute respiratory distress syndrome in adults. Am J
Health Syst Pharm. 65:29-36, 2008.
24.Hertz MI, Taylor DO, Trulock EP, Boucek MM, Mohacsi PJ, Edwards LB, Keck
BM: The registry of the international society for heart and lung
transplantation: nineteenth official report-2002. J Heart Lung Transplant .
21:950-970, 2002.
25.Hosenpud JD, Bennett LE, Keck BM, Fiol B, Boucek MM, Novick RJ: The
Registry of the International Society for Heart and Lung Transplantation:
fifteenth official report--1998. J Heart Lung Transplant .17:656-668, 1998.
26.de Perrot M, Liu M, Waddell TK, Keshavjee S: Ischemia-reperfusion-induced
lung injury. Am J Respir Crit Care Med. 167:490-511, 2003.
27.Ng CS, Wan S, Yim AP, Arifi AA: Pulmonary dysfunction after cardiac
surgery. Chest. 121:1269-1277, 2002.
28.Land WG: The role of postischemic reperfusion injury and other nonantigen-
dependent inflammatory pathways in transplantation. Transplantation.
79:505-514, 2005.
29.Torres RL, Martins LK, Picoral M, Auzani J, Fernandes TR, Torres IL,
Ferreira MB, Andrade CF, Bello-Klein A, Cardoso PF: The potential
protective effect of low potassium dextran against lipid peroxidation in a
rat lung transplantation model. Thorac Cardiovasc Surg. 57:309-311, 2009.
30.Kelly RF, Murar J, Hong Z, Nelson DP, Hong F, Varghese A, Weir EK: Low
potassium dextran lung preservation solution reduces reactive oxygen
species production. Ann Thorac Surg. 75:1705-1710, 2003.
31.Matthay MA, Zimmerman GA: Acute lung injury and the acute respiratory
distress syndrome: four decades of inquiry into pathogenesis and rational
management. Am J Respir Cell Mol Biol. 33:319-327, 2005.
32.Brower RG, Matthay MA, Morris A, Schoenfeld D, Thompson BT, Wheeler A:
Ventilation with lower tidal volumes as compared with traditional tidal
volumes for acute lung injury and the acute respiratory distress syndrome.
N Engl J Med. 342:1301-1308, 2000.
33.Terragni PP, Rosboch G, Tealdi A, Corno E, Menaldo E, Davini O, Gandini G,
Herrmann P, Mascia L, Quintel M, et al: Tidal hyperinflation during low
tidal volume ventilation in acute respiratory distress syndrome. Am J
Respir Crit Care Med. 175:160-166, 2007.
34.Tremblay L, Valenza F, Ribeiro SP, Li J, Slutsky AS: Injurious ventilatory
strategies increase cytokines and c-fos m-RNA expression in an isolated rat
lung model. J Clin Invest. 99:944-952, 1997.
35.Brigham KL: Oxidant stress and adult respiratory distress syndrome. Eur
Respir J Suppl. 11:482s-484s, 1990.
36.Brigham KL, Meyrick B, Berry LC, Jr., Repine JE: Antioxidants protect
cultured bovine lung endothelial cells from injury by endotoxin. J Appl
Physiol (1985). 63:840-850, 1987.
37.Chiumello D, Pristine G, Slutsky AS: Mechanical ventilation affects local
and systemic cytokines in an animal model of acute respiratory distress
syndrome. Am J Respir Crit Care Med. 160:109-116, 1999.
38.Williams AE, Chambers RC: The mercurial nature of neutrophils: still an
enigma in ARDS? Am J Physiol Lung Cell Mol Physiol. 306:L217-230, 2014.
39.Moldoveanu B, Otmishi P, Jani P, Walker J, Sarmiento X, Guardiola J, Saad
M, Yu J: Inflammatory mechanisms in the lung. J Inflamm Res. 2:1-11, 2009.
40.Levitt JE, Gould MK, Ware LB, Matthay MA: The pathogenetic and prognostic
value of biologic markers in acute lung injury. J Intensive Care Med.
24:151-167, 2009.
41.Vlahakis NE, Schroeder MA, Limper AH, Hubmayr RD: Stretch induces cytokine
release by alveolar epithelial cells in vitro. Am J Physiol. 277:L167-173,
1999.
42.Dahl TB, Holm S, Aukrust P, Halvorsen B: Visfatin/NAMPT: a multifaceted
molecule with diverse roles in physiology and pathophysiology. Annu Rev
Nutr. 32:229-243, 2012.
43.Sun Z, Lei H, Zhang Z: Pre-B cell colony enhancing factor (PBEF), a
cytokine with multiple physiological functions. Cytokine Growth Factor Rev.
24:433-442, 2013.
44.Ognjanovic S, Bryant-Greenwood GD: Pre-B-cell colony-enhancing factor, a
novel cytokine of human fetal membranes. Am J Obstet Gynecol. 187:1051-
1058, 2002.
45.Rongvaux A, Shea RJ, Mulks MH, Gigot D, Urbain J, Leo O, Andris F: Pre-B-
cell colony-enhancing factor, whose expression is up-regulated in activated
lymphocytes, is a nicotinamide phosphoribosyltransferase, a cytosolic
enzyme involved in NAD biosynthesis. Eur J Immunol. 32:3225-3234, 2002.
46.Yeung F, Hoberg JE, Ramsey CS, Keller MD, Jones DR, Frye RA, Mayo MW:
Modulation of NF-kappaB-dependent transcription and cell survival by the
SIRT1 deacetylase. Embo j. 23:2369-2380, 2004.
47.Ognjanovic S, Bao S, Yamamoto SY, Garibay-Tupas J, Samal B, Bryant-
Greenwood GD: Genomic organization of the gene coding for human pre-B-cell
colony enhancing factor and expression in human fetal membranes. J Mol
Endocrinol. 26:107-117, 2001.
48.Malam Z, Parodo J, Waheed F, Szaszi K, Kapus A, Marshall JC: Pre-B cell
colony-enhancing factor (PBEF/Nampt/visfatin) primes neutrophils for
augmented respiratory burst activity through partial assembly of the NADPH
oxidase. J Immunol. 186:6474-6484, 2011.
49.Hong SB, Huang Y, Moreno-Vinasco L, Sammani S, Moitra J, Barnard JW, Ma SF,
Mirzapoiazova T, Evenoski C, Reeves RR, et al: Essential role of pre-B-cell
colony enhancing factor in ventilator-induced lung injury. Am J Respir Crit
Care Med. 178:605-617, 2008.
50.Zhang LQ, Heruth DP, Ye SQ: Nicotinamide Phosphoribosyltransferase in Human
Diseases. J Bioanal Biomed. 3:13-25, 2011.
51.Ye SQ, Simon BA, Maloney JP, Zambelli-Weiner A, Gao L, Grant A, Easley RB,
McVerry BJ, Tuder RM, Standiford T, et al: Pre-B-cell colony-enhancing
factor as a potential novel biomarker in acute lung injury. Am J Respir
Crit Care Med. 171:361-370, 2005.
52.Bajwa EK, Yu CL, Gong MN, Thompson BT, Christiani DC: Pre-B-cell colony-
enhancing factor gene polymorphisms and risk of acute respiratory distress
syndrome. Crit Care Med. 35:1290-1295, 2007.
53.Wang P, Miao CY: NAMPT as a Therapeutic Target against Stroke. Trends
Pharmacol Sci. 36:891-905, 2015.
54.Busso N, Karababa M, Nobile M, Rolaz A, Van Gool F, Galli M, Leo O, So A,
De Smedt T: Pharmacological inhibition of nicotinamide
phosphoribosyltransferase/visfatin enzymatic activity identifies a new
inflammatory pathway linked to NAD. PLoS One. 3:e2267, 2008.
55.Montecucco F, Bauer I, Braunersreuther V, Bruzzone S, Akhmedov A, Luscher
TF, Speer T, Poggi A, Mannino E, Pelli G, et al: Inhibition of nicotinamide
phosphoribosyltransferase reduces neutrophil-mediated injury in myocardial
infarction. Antioxid Redox Signal. 18:630-641, 2013.
56.Van Gool F, Galli M, Gueydan C, Kruys V, Prevot PP, Bedalov A, Mostoslavsky
R, Alt FW, De Smedt T, Leo O: Intracellular NAD levels regulate tumor
necrosis factor protein synthesis in a sirtuin-dependent manner. Nat Med.
15:206-210, 2009.
57.Moreno-Vinasco L, Quijada H, Sammani S, Siegler J, Letsiou E, Deaton R,
Saadat L, Zaidi RS, Messana J, Gann PH, et al: Nicotinamide
phosphoribosyltransferase inhibitor is a novel therapeutic candidate in
murine models of inflammatory lung injury. Am J Respir Cell Mol Biol.
51:223-228, 2014.
58.Matsuda A, Yang WL, Jacob A, Aziz M, Matsuo S, Matsutani T, Uchida E, Wang
P: FK866, a visfatin inhibitor, protects against acute lung injury after
intestinal ischemia-reperfusion in mice via NF-kappaB pathway. Ann Surg.
259:1007-1017, 2014.
59.Jockers R, Delagrange P, Dubocovich ML, Markus RP, Renault N, Tosini G,
Cecon E, Zlotos DP: Update on melatonin receptors: IUPHAR Review 20. Br J
Pharmacol. 173:2702-2725, 2016.
60.Radogna F, Paternoster L, Albertini MC, Cerella C, Accorsi A, Bucchini A,
Spadoni G, Diamantini G, Tarzia G, De Nicola M, et al: Melatonin
antagonizes apoptosis via receptor interaction in U937 monocytic cells. J
Pineal Res. 43:154-162, 2007.
61.Lochner A, Genade S, Davids A, Ytrehus K, Moolman JA: Short- and long-term
effects of melatonin on myocardial post-ischemic recovery. J Pineal Res.
40:56-63,2006.
62.Rezzani R, Rodella LF, Bonomini F, Tengattini S, Bianchi R, Reiter RJ:
Beneficial effects of melatonin in protecting against cyclosporine A-
induced cardiotoxicity are receptor mediated. J Pineal Res. 41:288-295,
2006.
63.Fink T, Glas M, Wolf A, Kleber A, Reus E, Wolff M, Kiefer D, Wolf B,
Rensing H, Volk T, Mathes AM: Melatonin receptors mediate improvements of
survival in a model of polymicrobial sepsis. Crit Care Med. 42:e22-31,2014.
64.Dokka S, Shi X, Leonard S, Wang L, Castranova V, Rojanasakul Y:
Interleukin-10-mediated inhibition of free radical generation in
macrophages. Am J Physiol Lung Cell Mol Physiol. 280:L1196-1202, 2001.
65.Fiorentino DF, Zlotnik A, Mosmann TR, Howard M, O'Garra A: Pillars Article:
IL-10 Inhibits Cytokine Production by Activated Macrophages. J. Immunol.
1991. 147: 3815-3822. J Immunol. 197:1539-1546, 2016.
66.Baeuerle PA, Henkel T: Function and activation of NF-kappa B in the immune
system. Annu Rev Immunol. 12:141-179, 1994.
67.Baldwin AS, Jr.: The NF-kappa B and I kappa B proteins: new discoveries and
insights. Annu Rev Immunol. 14:649-683, 1996.
68.Yoshidome H, Kato A, Edwards MJ, Lentsch AB: Interleukin-10 inhibits
pulmonary NF-kappaB activation and lung injury induced by hepatic ischemia-
reperfusion. Am J Physiol. 277:L919-923, 1999.
69.Manning E, Pham S, Li S, Vazquez-Padron RI, Mathew J, Ruiz P, Salgar SK:
Interleukin-10 delivery via mesenchymal stem cells: a novel gene therapy
approach to prevent lung ischemia-reperfusion injury. Hum Gene Ther.
21:713-727, 2010.
70.Bi MH, Wang BE, Zheng XX, Li M, Mayer K, Zhang SW: [The effect of
recombinant interleukin-10/Fc fusion protein on lipopolysaccharide-induced
acute lung injury in mice]. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue . 20:461-
464, 2008.
71.Arai T, Abe K, Matsuoka H, Yoshida M, Mori M, Goya S, Kida H, Nishino K,
Osaki T, Tachibana I, et al: Introduction of the interleukin-10 gene into
mice inhibited bleomycin-induced lung injury in vivo. Am J Physiol Lung
Cell Mol Physiol. 278:L914-922, 2000.
72.Reinhart PG, Gupta SK, Bhalla DK: Attenuation of ozone-induced lung injury
by interleukin-10. Toxicol Lett. 110:35-42, 1999.
73.Cuzzocrea S, Mazzon E, Dugo L, Serraino I, Di Paola R, Genovese T, De Sarro
A, Caputi AP: Absence of endogenous interleukin-10 enhances the evolution
of acute lung injury. Eur Cytokine Netw. 13:285-297, 2002.
74.Sun L, Guo RF, Newstead MW, Standiford TJ, Macariola DR, Shanley TP: Effect
of IL-10 on neutrophil recruitment and survival after Pseudomonas
aeruginosa challenge. Am J Respir Cell Mol Biol. 41:76-84, 2009.
75.Penaloza HF, Nieto PA, Munoz-Durango N, Salazar-Echegarai FJ, Torres J,
Parga MJ, Alvarez-Lobos M, Riedel CA, Kalergis AM, Bueno SM: Interleukin-10
plays a key role in the modulation of neutrophils recruitment and lung
inflammation during infection by Streptococcus pneumoniae. Immunology.
146:100-112, 2015.
76.Hokenson MA, Wang Y, Hawwa RL, Huang Z, Sharma S, Sanchez-Esteban J:
Reduced IL-10 production in fetal type II epithelial cells exposed to
mechanical stretch is mediated via activation of IL-6-SOCS3 signaling
pathway. PLoS One. 8:e59598, 2013.
77.Ren W, Liu G, Chen S, Yin J, Wang J, Tan B, Wu G, Bazer FW, Peng Y, Li T,
et al: Melatonin signaling in T cells: Functions and applications. J Pineal
Res. 62(3). doi: 10.1111, 2017.
78.Bekyarova G, Tancheva S, Hristova M: Protective effect of melatonin against
oxidative hepatic injury after experimental thermal trauma. Methods Find
Exp Clin Pharmacol. 31:11-14, 2009.
79.Bekyarova G, Apostolova M, Kotzev I: Melatonin protection against burn-
induced hepatic injury by down-regulation of nuclear factor kappa B
activation. Int J Immunopathol Pharmacol. 25:591-596, 2012.
80.Chen SJ, Huang SH, Chen JW, Wang KC, Yang YR, Liu PF, Lin GJ, Sytwu HK:
Melatonin enhances interleukin-10 expression and suppresses chemotaxis to
inhibit inflammation in situ and reduce the severity of experimental
autoimmune encephalomyelitis. Int Immunopharmacol. 31:169-177, 2016.
81.Mathes AM, Kubulus D, Waibel L, Weiler J, Heymann P, Wolf B, Rensing H:
Selective activation of melatonin receptors with ramelteon improves liver
function and hepatic perfusion after hemorrhagic shock in rat. Crit Care
Med. 36:2863-2870, 2008.
82.Shimizu N, Nozawa M, Sugimoto K, Yamamoto Y, Minami T, Hayashi T, Yoshimura
K, Ishii T, Uemura H: Therapeutic efficacy and anti-inflammatory effect of
ramelteon in patients with insomnia associated with lower urinary tract
symptoms. Res Rep Urol. 5:113-119, 2013.
83.Zhou W, Zhang X, Zhu CL, He ZY, Liang JP, Song ZC: Melatonin Receptor
Agonists as the "Perioceutics" Agents for Periodontal Disease through
Modulation of Porphyromonas gingivalis Virulence and Inflammatory Response.
PLoS One. 11:e0166442, 2016.
84.Chu SJ, Chang DM, Wang D, Chen YH, Hsu CW, Hsu K: Fructose-1,6-diphosphate
attenuates acute lung injury induced by ischemia-reperfusion in rats. Crit
Care Med. 30:1605-1609, 2002.
85.Wu SY, Li MH, Ko FC, Wu GC, Huang KL, Chu SJ: Protective effect of
hypercapnic acidosis in ischemia-reperfusion lung injury is attributable to
upregulation of heme oxygenase-1. PLoS One. 8:e74742. 2013.
86.Wu SY, Tang SE, Ko FC, Wu GC, Huang KL, Chu SJ: Valproic acid attenuates
acute lung injury induced by ischemia-reperfusion in rats. Anesthesiology.
122:1327-1337, 2015.
87.Syrkina O, Jafari B, Hales CA, Quinn DA: Oxidant stress mediates
inflammation and apoptosis in ventilator-induced lung injury. Respirology.
13:333-340, 2008.
88.Wang ML, Wei CH, Wang WD, Wang JS, Zhang J, Wang JJ: Melatonin attenuates
lung ischaemia-reperfusion injury via inhibition of oxidative stress and
inflammation. Interact Cardiovasc Thorac Surg. 26:761-767, 2018.
89.Cevik-Aras H, Godoy T, Ekstrom J: Melatonin-induced protein synthesis in
the rat parotid gland. J Physiol Pharmacol. 62:95-99, 2011.
90.Jaworek J, Konturek SJ, Leja-Szpak A, Nawrot K, Bonior J, Tomaszewska R,
Stachura J, Pawlik WW: Role of endogenous melatonin and its MT2 receptor in
the modulation of caerulein-induced pancreatitis in the rat. J Physiol
Pharmacol. 53:791-804, 2002.
91.Lee BS, Jun IG, Kim SH, Park JY: Intrathecal gabapentin increases
interleukin-10 expression and inhibits pro-inflammatory cytokine in a rat
model of neuropathic pain. J Korean Med Sci. 28:308-314, 2013.
92.Wu SY, Wu CP, Kang BH, Li MH, Chu SJ, Huang KL: Hypercapnic acidosis
attenuates reperfusion injury in isolated and perfused rat lungs. Crit Care
Med. 40:553-559, 2012.
93.Wu GC, Liao WI, Wu SY, Pao HP, Tang SE, Li MH, Huang KL, Chu SJ: Targeting
of nicotinamide phosphoribosyltransferase enzymatic activity ameliorates
lung damage induced by ischemia/reperfusion in rats. Respir Res. 18:71,
2017.
94.Liu P, Li H, Cepeda J, Zhang LQ, Cui X, Garcia JG, Ye SQ: Critical role of
PBEF expression in pulmonary cell inflammation and permeability. Cell Biol
Int. 33:19-30, 2009.
95.Esposito E, Impellizzeri D, Mazzon E, Fakhfouri G, Rahimian R, Travelli C,
Tron GC, Genazzani AA, Cuzzocrea S: The NAMPT inhibitor FK866 reverts the
damage in spinal cord injury. J Neuroinflammation. 9:662012.
96.McCord JM: Oxygen-derived free radicals in postischemic tissue injury. N
Engl J Med. 312:159-163, 1985.
97.Ye SQ, Zhang LQ, Adyshev D, Usatyuk PV, Garcia AN, Lavoie TL, Verin AD,
Natarajan V, Garcia JG: Pre-B-cell-colony-enhancing factor is critically
involved in thrombin-induced lung endothelial cell barrier dysregulation.
Microvasc Res. 70:142-151, 2005.
98.Jia SH, Li Y, Parodo J, Kapus A, Fan L, Rotstein OD, Marshall JC: Pre-B
cell colony-enhancing factor inhibits neutrophil apoptosis in experimental
inflammation and clinical sepsis. J Clin Invest. 113:1318-1327. 2004.
99.Zhang LQ, Adyshev DM, Singleton P, Li H, Cepeda J, Huang SY, Zou X, Verin
AD, Tu J, Garcia JG, Ye SQ: Interactions between PBEF and oxidative stress
proteins--a potential new mechanism underlying PBEF in the pathogenesis of
acute lung injury. FEBS Lett. 582:1802-1808, 2008.
100.Pan X, Zhu L, Lu H, Wang D, Lu Q, Yan H: Melatonin Attenuates Oxidative
Damage Induced by Acrylamide In Vitro and In Vivo. Oxid Med Cell Longev.
2015:703709, 2015.
101.Rosen RB, Hu DN, Chen M, McCormick SA, Walsh J, Roberts JE: Effects of
melatonin and its receptor antagonist on retinal pigment epithelial cells
against hydrogen peroxide damage. Mol Vis. 18:1640-1648, 2012.
102.Stroethoff M, Christoph I, Behmenburg F, Raupach A, Bunte S, Senpolat S,
Heinen A, Hollmann MW, Mathes A, Huhn R: Melatonin Receptor Agonist
Ramelteon Reduces Ischemia-Reperfusion Injury Through Activation of
Mitochondrial Potassium Channels. J Cardiovasc Pharmacol. 72:106-111,
2018.
103.Ng CS, Wan S, Yim AP: Pulmonary ischaemia-reperfusion injury: role of
apoptosis. Eur Respir J. 25:356-363, 2005.
104.Wosten-van Asperen RM, Lutter R, Haitsma JJ, Merkus MP, van Woensel JB,
van der Loos CM, Florquin S, Lachmann B, Bos AP: ACE mediates ventilator-
induced lung injury in rats via angiotensin II but not bradykinin. Eur
Respir J. 31:363-371, 2008.
105.Barlos D, Deitch EA, Watkins AC, Caputo FJ, Lu Q, Abungu B, Colorado I, Xu
DZ, Feinman R: Trauma-hemorrhagic shock-induced pulmonary epithelial and
endothelial cell injury utilizes different programmed cell death signaling
pathways. Am J Physiol Lung Cell Mol Physiol. 296:L404-417, 2009.
106.Perl M, Lomas-Neira J, Chung CS, Ayala A: Epithelial cell apoptosis and
neutrophil recruitment in acute lung injury-a unifying hypothesis? What we
have learned from small interfering RNAs. Mol Med. 14:465-475, 2008.
107.Zhou X, Dai Q, Huang X: Neutrophils in acute lung injury. Front Biosci
(Landmark Ed). 17:2278-2283, 2012.
108.Robb CT, Regan KH, Dorward DA, Rossi AG: Key mechanisms governing
resolution of lung inflammation. Semin Immunopathol. 38:425-448, 2016.
109.Galli U, Travelli C, Massarotti A, Fakhfouri G, Rahimian R, Tron GC,
Genazzani AA: Medicinal chemistry of nicotinamide
phosphoribosyltransferase (NAMPT) inhibitors. J Med Chem. 56:6279-6296,
2013.
110.Tang PS, Mura M, Seth R, Liu M: Acute lung injury and cell death: how many
ways can cells die? Am J Physiol Lung Cell Mol Physiol. 294:L632-641,
2008.
111.Yanling Q, Xiaoning C, Fei B, Liyun F, Huizhong H, Daqing S: Inhibition of
NLRP9b attenuates acute lung injury through suppressing inflammation,
apoptosis and oxidative stress in murine and cell models. Biochem Biophys
Res Commun. 503:436-443, 2018.
112.Kim YH, Park JW, Lee JY, Surh YJ, Kwon TK: Bcl-2 overexpression prevents
daunorubicin-induced apoptosis through inhibition of XIAP and Akt
degradation. Biochem Pharmacol. 66:1779-1786, 2003.
113.Prado NJ, Casarotto M, Calvo JP, Mazzei L, Ponce Zumino AZ, Garcia IM,
Cuello-Carrion FD, Fornes MW, Ferder L, Diez ER, Manucha W: Antiarrhythmic
effect linked to melatonin cardiorenal protection involves AT1 reduction
and Hsp70-VDR increase. J Pineal Res. 65:e12513, 2018.
114.Aschkenasy G, Bromberg Z, Raj N, Deutschman CS, Weiss YG: Enhanced Hsp70
expression protects against acute lung injury by modulating apoptotic
pathways. PLoS One. 6:e26956, 2011.
115.Kondrikov D, Fulton D, Dong Z, Su Y: Heat Shock Protein 70 Prevents
Hyperoxia-Induced Disruption of Lung Endothelial Barrier via Caspase-
Dependent and AIF-Dependent Pathways. PLoS One. 10:e0129343, 2015.
116.Sabirzhanov B, Stoica BA, Hanscom M, Piao CS, Faden AI: Over-expression of
HSP70 attenuates caspase-dependent and caspase-independent pathways and
inhibits neuronal apoptosis. J Neurochem . 123:542-554, 2012.
117.Sinha B, Wu Q, Li W, Tu Y, Sirianni AC, Chen Y, Jiang J, Zhang X, Chen W,
Zhou S, et al: Protection of melatonin in experimental models of newborn
hypoxic-ischemic brain injury through MT1 receptor. J Pineal Res. 64(1).
doi: 10.1111, 2018.
118.Espino J, Ortiz A, Bejarano I, Lozano GM, Monllor F, Garcia JF, Rodriguez
AB, Pariente JA: Melatonin protects human spermatozoa from apoptosis via
melatonin receptor- and extracellular signal-regulated kinase-mediated
pathways. Fertil Steril. 95:2290-2296, 2011.
119.Radogna F, Cristofanon S, Paternoster L, D'Alessio M, De Nicola M, Cerella
C, Dicato M, Diederich M, Ghibelli L: Melatonin antagonizes the intrinsic
pathway of apoptosis via mitochondrial targeting of Bcl-2. J Pineal Res.
44:316-325, 2008.
120.Leja-Szpak A, Pierzchalski P, Goralska M, Nawrot-Porabka K, Bonior J,
Link-Lenczowski P, Jastrzebska M, Jaworek J: Kynuramines induce
overexpression of heat shock proteins in pancreatic cancer cells via 5-
hydroxytryptamine and MT1/MT2 receptors. J Physiol Pharmacol. 66:711-718,
2015.
121.Morgan MJ, Liu ZG: Crosstalk of reactive oxygen species and NF-kappaB
signaling. Cell Res. 21:103-115, 2011.
122.Romashkova JA, Makarov SS: NF-kappaB is a target of AKT in anti-apoptotic
PDGF signalling. Nature. 401:86-90, 1999.
123.Yum HK, Arcaroli J, Kupfner J, Shenkar R, Penninger JM, Sasaki T, Yang KY,
Park JS, Abraham E: Involvement of phosphoinositide 3-kinases in
neutrophil activation and the development of acute lung injury. J Immunol.
167:6601-6608, 2001.
124.Camp SM, Ceco E, Evenoski CL, Danilov SM, Zhou T, Chiang ET, Moreno-
Vinasco L, Mapes B, Zhao J, Gursoy G, et al: Unique Toll-Like Receptor 4
Activation by NAMPT/PBEF Induces NFkappaB Signaling and Inflammatory Lung
Injury. Sci Rep. 5:13135, 2015.
125.Asaduzzaman M, Wang Y, Thorlacius H: Critical role of p38 mitogen-
activated protein kinase signaling in septic lung injury. Crit Care Med.
36:482-488, 2008.
126.Chen LW, Tseng HT, Chen PH, Hsu CM: Peritonitis-induced peroxynitrite and
lung damage depends on c-Jun NH2-terminal kinase signaling of
hematopoietic cells. Crit Care Med. 38:1168-1178, 2010.
127.Schuh K, Pahl A: Inhibition of the MAP kinase ERK protects from
lipopolysaccharide-induced lung injury. Biochem Pharmacol. 77:1827-1834,
2009.
128.Cao W, Bao C, Padalko E, Lowenstein CJ: Acetylation of mitogen-activated
protein kinase phosphatase-1 inhibits Toll-like receptor signaling. J Exp
Med. 205:1491-1503, 2008.
129.Zhao Q, Wang X, Nelin LD, Yao Y, Matta R, Manson ME, Baliga RS, Meng X,
Smith CV, Bauer JA, et al: MAP kinase phosphatase 1 controls innate immune
responses and suppresses endotoxic shock. J Exp Med. 203:131-140, 2006.
130.Hsu HH, Wu SY, Tang SE, Wu GC, Li MH, Huang KL, Chu SJ: Protection against
reperfusion lung injury via aborgating multiple signaling cascades by
trichostatin A. Int Immunopharmacol. 25:267-275, 2015.
131.Grolla AA, Travelli C, Genazzani AA, Sethi JK: Extracellular nicotinamide
phosphoribosyltransferase, a new cancer metabokine. Br J Pharmacol.
173:2182-2194, 2016.
132.Favero G, Franceschetti L, Bonomini F, Rodella LF, Rezzani R: Melatonin as
an Anti-Inflammatory Agent Modulating Inflammasome Activation. Int J
Endocrinol. 2017:1835195, 2017.
133.Moniruzzaman M, Ghosal I, Das D, Chakraborty SB: Melatonin ameliorates
H2O2-induced oxidative stress through modulation of Erk/Akt/NFkB pathway.
Biol Res. 51:17, 2018.
134.Schulz C, Gillissen A, Schultze-Werninghaus G: [Inducible nitric oxide
synthase in pulmonary inflammatory processes]. Pneumologie. 52:340-349,
1998.
135.Ermert M, Ruppert C, Gunther A, Duncker HR, Seeger W, Ermert L: Cell-
specific nitric oxide synthase-isoenzyme expression and regulation in
response to endotoxin in intact rat lungs. Lab Invest. 82:425-441, 2002.
136.Hickey MJ, Sharkey KA, Sihota EG, Reinhardt PH, Macmicking JD, Nathan C,
Kubes P: Inducible nitric oxide synthase-deficient mice have enhanced
leukocyte-endothelium interactions in endotoxemia. Faseb j. 11:955-964,
1997.
137.Hollenberg SM, Broussard M, Osman J, Parrillo JE: Increased microvascular
reactivity and improved mortality in septic mice lacking inducible nitric
oxide synthase. Circ Res. 86:774-778, 2000.
138.Dorger M, Allmeling AM, Kiefmann R, Munzing S, Messmer K, Krombach F:
Early inflammatory response to asbestos exposure in rat and hamster lungs:
role of inducible nitric oxide synthase. Toxicol Appl Pharmacol. 181:93-
105, 2002.
139.Dorger M, Allmeling AM, Kiefmann R, Schropp A, Krombach F: Dual role of
inducible nitric oxide synthase in acute asbestos-induced lung injury.
Free Radic Biol Med. 33:491-501, 2002.
140.Steudel W, Watanabe M, Dikranian K, Jacobson M, Jones RC: Expression of
nitric oxide synthase isoforms (NOS II and NOS III) in adult rat lung in
hyperoxic pulmonary hypertension. Cell Tissue Res. 295:317-329, 1999.
141.Hesse AK, Dorger M, Kupatt C, Krombach F: Proinflammatory role of
inducible nitric oxide synthase in acute hyperoxic lung injury. Respir
Res. 5:11, 2004.
142.Peng X, Abdulnour RE, Sammani S, Ma SF, Han EJ, Hasan EJ, Tuder R, Garcia
JG, Hassoun PM: Inducible nitric oxide synthase contributes to ventilator-
induced lung injury. Am J Respir Crit Care Med. 172:470-479, 2005.
143.Jung KH, Hong SW, Zheng HM, Lee DH, Hong SS: Melatonin downregulates
nuclear erythroid 2-related factor 2 and nuclear factor-kappaB during
prevention of oxidative liver injury in a dimethylnitrosamine model. J
Pineal Res. 47:173-183, 2009.
144.Hsu JT, Le PH, Lin CJ, Chen TH, Kuo CJ, Chiang KC, Yeh TS: Mechanism of
salutary effects of melatonin-mediated liver protection after trauma-
hemorrhage: p38 MAPK-dependent iNOS/HIF-1alpha pathway. Am J Physiol
Gastrointest Liver Physiol. 312:G427-g433, 2017.
145.Radogna F, Diederich M, Ghibelli L: Melatonin: a pleiotropic molecule
regulating inflammation. Biochem Pharmacol. 80:1844-1852, 2010.
146.Goodman RB, Pugin J, Lee JS, Matthay MA: Cytokine-mediated inflammation in
acute lung injury. Cytokine Growth Factor Rev. 14:523-535, 2003.
147.Carrillo-Vico A, Lardone PJ, Alvarez-Sanchez N, Rodriguez-Rodriguez A,
Guerrero JM: Melatonin: buffering the immune system. Int J Mol Sci.
14:8638-8683, 2013.
148.Zhao J, Yu H, Liu Y, Gibson SA, Yan Z, Xu X, Gaggar A, Li PK, Li C, Wei S,
et al: Protective effect of suppressing STAT3 activity in LPS-induced
acute lung injury. Am J Physiol Lung Cell Mol Physiol. 311:L868-l880,
2016.
149.Severgnini M, Takahashi S, Rozo LM, Homer RJ, Kuhn C, Jhung JW, Perides G,
Steer M, Hassoun PM, Fanburg BL, et al: Activation of the STAT pathway in
acute lung injury. Am J Physiol Lung Cell Mol Physiol. 286:L1282-1292,
2004.
150.Braun DA, Fribourg M, Sealfon SC: Cytokine response is determined by
duration of receptor and signal transducers and activators of
transcription 3 (STAT3) activation. J Biol Chem. 288:2986-2993, 2013.
151.Hoegl S, Boost KA, Czerwonka H, Dolfen A, Scheiermann P, Muhl H, Zwissler
B, Hofstetter C: Inhaled IL-10 reduces biotrauma and mortality in a model
of ventilator-induced lung injury. Respir Med. 103:463-470, 2009.
152.Hofstetter C, Flondor M, Hoegl S, Muhl H, Zwissler B: Interleukin-10
aerosol reduces proinflammatory mediators in bronchoalveolar fluid of
endotoxemic rat. Crit Care Med. 33:2317-2322, 2005.
153.Li HD, Zhang QX, Mao Z, Xu XJ, Li NY, Zhang H: Exogenous interleukin-10
attenuates hyperoxia-induced acute lung injury in mice. Exp Physiol.
100:331-340, 2015.
154.Lee HS, Wang Y, Maciejewski BS, Esho K, Fulton C, Sharma S, Sanchez-
Esteban J: Interleukin-10 protects cultured fetal rat type II epithelial
cells from injury induced by mechanical stretch. Am J Physiol Lung Cell
Mol Physiol. 294:L225-232, 2008.
155.John T, Muller RD, Oberholzer A, Zreiqat H, Kohl B, Ertel W, Hostmann A,
Tschoeke SK, Schulze-Tanzil G: Interleukin-10 modulates pro-apoptotic
effects of TNF-alpha in human articular chondrocytes in vitro. Cytokine.
2007, 40:226-234, 2007.
156.Borges TJ, Lopes RL, Pinho NG, Machado FD, Souza AP, Bonorino C:
Extracellular Hsp70 inhibits pro-inflammatory cytokine production by IL-10
driven down-regulation of C/EBPbeta and C/EBPdelta. Int J Hyperthermia.
29:455-463, 2013.
157.Yang Y, Takeda A, Yoshimura T, Oshima Y, Sonoda KH, Ishibashi T: IL-10 is
significantly involved in HSP70-regulation of experimental subretinal
fibrosis. PLoS One. 8:e80288, 2013.
158.Wu WS, Chou MT, Chao CM, Chang CK, Lin MT, Chang CP: Melatonin reduces
acute lung inflammation, edema, and hemorrhage in heatstroke rats. Acta
Pharmacol Sin. 33:775-782, 2012.
159.Pandi-Perumal SR, Trakht I, Srinivasan V, Spence DW, Maestroni GJ, Zisapel
N, Cardinali DP: Physiological effects of melatonin: role of melatonin
receptors and signal transduction pathways. Prog Neurobiol. 85:335-353,
2008.
160.Liu J, Clough SJ, Hutchinson AJ, Adamah-Biassi EB, Popovska-Gorevski M,
Dubocovich ML: MT1 and MT2 Melatonin Receptors: A Therapeutic Perspective.
Annu Rev Pharmacol Toxicol. 56:361-383, 2016.
161.Zheng Q, Wang YC, Liu QX, Dong XJ, Xie ZX, Liu XH, Gao W, Bai XJ, Li ZF:
FK866 attenuates sepsis-induced acute lung injury through c-jun-N-terminal
kinase (JNK)-dependent autophagy. Life Sci. 250:117551,2020.
162.Wu X, Ji H, Wang Y, Gu C, Gu W, Hu L, Zhu L: Melatonin Alleviates
Radiation-Induced Lung Injury via Regulation of miR-30e/NLRP3 Axis. Oxid
Med Cell Longev. 2019:4087298,2019.
163.Zhang L, Li F, Su X, Li Y, Wang Y, Fang R, Guo Y, Jin T, Shan H, Zhao X,
et al: Melatonin prevents lung injury by regulating apelin 13 to improve
mitochondrial dysfunction. Exp Mol Med. 51:73,2019.
164.Zhang L, Zhang F, He D, Xu D, Zhong Z, Shen J: Melatonin attenuates
phosgene-induced acute lung injury via the upregulation Wnt/beta-catenin
pathway. Int J Clin Exp Pathol. 10:11281-11287,2017.
165.Gesing J, Scheuermann K, Wagner IV, Loffler D, Friebe D, Kiess W, Schuster
V, Korner A: NAMPT serum levels are selectively elevated in acute
infectious disease and in acute relapse of chronic inflammatory diseases
in children. PLoS One. 12:e0183027,2017.
166.Hu W, Liu CW, Su J, Lu J, Zhu Y, Liu BW: Elevated plasma visfatin
concentrations in patients with community-acquired pneumonia. Peptides.
43:8-12, 2013.
167.Cekmez F, Canpolat FE, Cetinkaya M, Aydinoz S, Aydemir G, Karademir F,
Ipcioglu OM, Sarici SU: Diagnostic value of resistin and visfatin, in
comparison with C-reactive protein, procalcitonin and interleukin-6 in
neonatal sepsis. Eur Cytokine Netw. 22:113-117, 2011.
168.Lee KA, Gong MN: Pre-B-cell colony-enhancing factor and its clinical
correlates with acute lung injury and sepsis. Chest. 140:382-390, 2011.
169.Bazyar H, Gholinezhad H, Moradi L, Salehi P, Abadi F, Ravanbakhsh M, Zare
Javid A: The effects of melatonin supplementation in adjunct with non-
surgical periodontal therapy on periodontal status, serum melatonin and
inflammatory markers in type 2 diabetes mellitus patients with chronic
periodontitis: a double-blind, placebo-controlled trial.
Inflammopharmacology. 27:67-76, 2019.
170.Kucukakin B, Lykkesfeldt J, Nielsen HJ, Reiter RJ, Rosenberg J, Gogenur I:
Utility of melatonin to treat surgical stress after major vascular
surgery-a safety study. J Pineal Res. 44:426-431, 2008.
171.Zhao Z, Lu C, Li T, Wang W, Ye W, Zeng R, Ni L, Lai Z, Wang X, Liu C: The
protective effect of melatonin on brain ischemia and reperfusion in rats
and humans: In vivo assessment and a randomized controlled trial. J Pineal
Res. 65:e12521, 2018.
172.Shafiei E, Bahtoei M, Raj P, Ostovar A, Iranpour D, Akbarzadeh S,
Shahryari H, Anvaripour A, Tahmasebi R, Netticadan T, Movahed A: Effects
of N-acetyl cysteine and melatonin on early reperfusion injury in patients
undergoing coronary artery bypass grafting: A randomized, open-labeled,
placebo-controlled trial. Medicine (Baltimore). 97:e11383, 2018.
173.Zarezadeh M, Khorshidi M, Emami M, Janmohammadi P, Kord-Varkaneh H,
Mousavi SM, Mohammed SH, Saedisomeolia A, Alizadeh S: Melatonin
supplementation and pro-inflammatory mediators: a systematic review and
meta-analysis of clinical trials. Eur J Nutr. Nov 2. doi: 10, 2019.
174.Kang YS, Kang YG, Park HJ, Wee HJ, Jang HO, Bae MK, Bae SK: Melatonin
inhibits visfatin-induced inducible nitric oxide synthase expression and
nitric oxide production in macrophages. J Pineal Res. 55:294-303, 2013.
175.Guo JY, Li F, Wen YB, Cui HX, Guo ML, Zhang L, Zhang YF, Guo YJ, Guo YX:
Melatonin inhibits Sirt1-dependent NAMPT and NFAT5 signaling in
chondrocytes to attenuate osteoarthritis. Oncotarget. 8:55967-55983, 2017.
176.Matute-Bello G, Martin TR: Science review: apoptosis in acute lung injury.
Crit Care .7:355-358, 2003.
177.Jurmann MJ, Dammenhayn L, Schaefers HJ, Haverich A: Pulmonary reperfusion
injury: evidence for oxygen-derived free radical mediated damage and
effects of different free radical scavengers. Eur J Cardiothorac Surg.
4:665-670, 1990.
178.Abraham E: Neutrophils and acute lung injury. Crit Care Med. 31:S195-199,
2003.
179.Li C, Jackson RM: Reactive species mechanisms of cellular hypoxia-
reoxygenation injury. Am J Physiol Cell Physiol. 282:C227-241, 2002.
180.Hoidal JR: Reactive oxygen species and cell signaling. Am J Respir Cell
Mol Biol. 25:661-663, 2001.
181.Jafari B, Ouyang B, Li LF, Hales CA, Quinn DA: Intracellular glutathione
in stretch-induced cytokine release from alveolar type-2 like cells.
Respirology. 9:43-53, 2004.
182.Loebbermann J, Schnoeller C, Thornton H, Durant L, Sweeney NP, Schuijs M,
O'Garra A, Johansson C, Openshaw PJ: IL-10 regulates viral lung
immunopathology during acute respiratory syncytial virus infection in
mice. PLoS One. 7:e32371,2012.
183.Armstrong L, Millar AB: Relative production of tumour necrosis factor
alpha and interleukin 10 in adult respiratory distress syndrome. Thorax.
52:442-446, 1997.
184.Donnelly SC, Strieter RM, Reid PT, Kunkel SL, Burdick MD, Armstrong I,
Mackenzie A, Haslett C: The association between mortality rates and
decreased concentrations of interleukin-10 and interleukin-1 receptor
antagonist in the lung fluids of patients with the adult respiratory
distress syndrome. Ann Intern Med. 125:191-196, 1996.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top