跳到主要內容

臺灣博碩士論文加值系統

(3.236.110.106) 您好!臺灣時間:2021/07/25 08:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蕭鎮源
研究生(外文):HSIAO, CHEN-YUAN
論文名稱:應用瓦頓氏凝膠間葉幹細胞及抑鈣素治療代謝症候群動物模式之研究
論文名稱(外文):Study of Wharton's Jelly Mesenchymal Stem Cells and Calcitonin in the Animal Model of Metabolic Syndrome
指導教授:徐佳福陳天華陳天華引用關係翁仁崇翁仁崇引用關係蔡佩君蔡佩君引用關係
指導教授(外文):SHYU, JIA-FWUCHEN, TIEN-HUAWENG, ZEN-CHUNGTSAI, PEI-JIUN
口試委員:徐佳福傅毓秀林致源林谷峻蔡佩君
口試委員(外文):SHYU, JIA-FWUFU,YU-SHOWLIN, CHIH-YUANLIN, GU-JIUNTSAI, PEI-JIUN
口試日期:2020-08-21
學位類別:博士
校院名稱:國防醫學院
系所名稱:醫學科學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:117
中文關鍵詞:瓦頓氏凝膠間葉幹細胞抑鈣素心肌梗塞糖尿病骨質疏鬆
外文關鍵詞:Wharton's Jelly Mesenchymal Stem CellsCalcitoninMyocardial infarctionDiabetes mellitusOsteoporosis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:89
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
隨著時代的進步,物質生活的豐裕及人類平均壽命的延長,代謝症候群(Metabolic syndrome; Syndrome X)在全世界各族群中越來越普遍,而代謝症候群已經被許多研究證實會提升罹患糖尿病及心血管疾病的危險性,且會導致死亡率的增加。代謝症候群與骨肌減少症候群(Osteosarcopenia) 在中老年族群中時常並存,骨肌減少症候群為骨質減少或疏鬆(Osteopenia or Osteoporosis)合併肌少症(Sarcopenia)同時存在之情形,這些皆可視為老年病症候群。隨著逐漸進入老年化社會,罹患代謝症候群、骨肌減少症候群、糖尿病、心臟衰竭、心血管疾病及相關疾病的狀況也逐漸增加且可能互相影響;本研究內容即分為三大主要的部份,一、心血管疾病:利用幹細胞治療的方式,給予急性心肌梗塞動物模式的治療,來觀察治療後的變化;二、糖尿病相關的研究與治療:建立糖尿病動物模式後,給予瓦頓氏凝膠間質幹細胞治療,來觀察治療後之情況;三、骨質疏鬆及骨代謝相關研究:以去卵巢的方式來模擬停經後骨質疏鬆的動物模式,給予抑鈣素(Calcitonin)治療,來觀察治療後之情況及細胞內骨代謝的路徑探討。
In this era, the abundance of material life and the extension of lifespan, metabolic syndrome(Syndrome X) has a rapidly increasing incidence around the world. Metabolic syndrome has been confirmed by many studies that will increase the risk of diabetes mellitus and cardiovascular disease, and increasing in mortality and morbidity. Metabolic syndrome and osteosarcopenia often coexist in the middle-aged and elderly population. osteosarcopenia is osteoporosis combined with sarcopenia. All the conditions or diseases that exist at the same time can be regarded as senile syndrome. Taiwanese aged society will be even more visible and the comorbidity of metabolic syndrome, osteosarcopenia, heart failure and cardiovascular disease gradually increasing. Therefore, my research is subdivided into three major parts: 1. Cardiovascular disease: Transplantation of Wharton’s jelly mesenchymal cells to improve cardiac function in myocardial infarction rats. 2. Diabetes mellitus:Comparison between the therapeutic effects of differentiated and undifferentiated Wharton's jelly mesenchymal stem cells in rats with streptozotocin-induced diabetes. 3. Osteoporosis and bone metabolism:Calcitonin induces bone formation by increasing expression of Wnt10b in osteoclasts in ovariectomy-induced osteoporotic rats.
目錄
目錄 ---------------------------------------------- I
中文摘要 ------------------------------------------ III
英文摘要 ------------------------------------------ IV
總論 代謝症候群 ------------------------------------ 1
第一章 心血管疾病---急性心肌梗塞與幹細胞治療 ---------- 7
壹 緒論 --------------------------------------- 7
貳 材料與方法 --------------------------------- 18
參 實驗結果 ----------------------------------- 25
肆 討論 --------------------------------------- 40
伍 結論 --------------------------------------- 44
第二章 糖尿病與幹細胞治療 --------------------------- 45
壹 緒論 --------------------------------------- 45
貳 材料與方法 --------------------------------- 48
參 實驗結果 ----------------------------------- 53
肆 討論 --------------------------------------- 65
伍 結論 --------------------------------------- 68
第三章 骨代謝與骨質疏鬆 ----------------------------- 69
壹 緒論 --------------------------------------- 69
貳 材料與方法 --------------------------------- 72
參 實驗結果 ----------------------------------- 79
肆 討論 --------------------------------------- 88
伍 結論 --------------------------------------- 91
參考文獻 ------------------------------------------- 92

參考文獻
1.Vague, P. and D. Raccah, The syndrome of insulin resistance. Horm Res, 1992. 38(1-2): p. 28-32.
2.Trevisan, M., et al., Syndrome X and mortality: a population-based study. Risk Factor and Life Expectancy Research Group. Am J Epidemiol, 1998. 148(10): p. 958-66.
3.Boyko, E.J., et al., Features of the metabolic syndrome predict higher risk of diabetes and impaired glucose tolerance: a prospective study in Mauritius. Diabetes Care, 2000. 23(9): p. 1242-8.
4.Pyörälä, M., et al., Insulin resistance syndrome predicts the risk of coronary heart disease and stroke in healthy middle-aged men: the 22-year follow-up results of the Helsinki Policemen Study. Arterioscler Thromb Vasc Biol, 2000. 20(2): p. 538-44.
5.Isomaa, B., et al., Cardiovascular morbidity and mortality associated with the metabolic syndrome. Diabetes Care, 2001. 24(4): p. 683-9.
6.Kurl, S., et al., Metabolic syndrome and the risk of sudden cardiac death in middle-aged men. Int J Cardiol, 2016. 203: p. 792-7.
7.Uppalakal, B. and L.S. Karanayil, Incidence of Metabolic Syndrome in Patients Admitted to Medical Wards with ST Elevation Myocardial Infarction. J Clin Diagn Res, 2017. 11(3): p. Oc17-oc20.
8.Ford, E.S., W.H. Giles, and W.H. Dietz, Prevalence of the metabolic syndrome among US adults: findings from the third National Health and Nutrition Examination Survey. Jama, 2002. 287(3): p. 356-9.
9.Panagiotakos, D.B., et al., Impact of lifestyle habits on the prevalence of the metabolic syndrome among Greek adults from the ATTICA study. Am Heart J, 2004. 147(1): p. 106-12.
10.Tan, C.E., et al., Can we apply the National Cholesterol Education Program Adult Treatment Panel definition of the metabolic syndrome to Asians? Diabetes Care, 2004. 27(5): p. 1182-6.
11.Kuzuya, T., et al., Report of the Committee on the classification and diagnostic criteria of diabetes mellitus. Diabetes Res Clin Pract, 2002. 55(1): p. 65-85.
12.Balkau, B. and M.A. Charles, Comment on the provisional report from the WHO consultation. European Group for the Study of Insulin Resistance (EGIR). Diabet Med, 1999. 16(5): p. 442-3.
13.Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). Jama, 2001. 285(19): p. 2486-97.
14.Ford, E.S. and W.H. Giles, A comparison of the prevalence of the metabolic syndrome using two proposed definitions. Diabetes Care, 2003. 26(3): p. 575-81.
15.Ansarimoghaddam, A., et al., Prevalence of metabolic syndrome in Middle-East countries: Meta-analysis of cross-sectional studies. Diabetes Metab Syndr, 2018. 12(2): p. 195-201.
16.McCracken, E., M. Monaghan, and S. Sreenivasan, Pathophysiology of the metabolic syndrome. Clin Dermatol, 2018. 36(1): p. 14-20.
17.Saklayen, M.G., The Global Epidemic of the Metabolic Syndrome. Curr Hypertens Rep, 2018. 20(2): p. 12.
18.Deurenberg-Yap, M., et al., Manifestation of cardiovascular risk factors at low levels of body mass index and waist-to-hip ratio in Singaporean Chinese. Asia Pac J Clin Nutr, 1999. 8(3): p. 177-83.
19.Lin, R.T., et al., Metabolic syndrome and its contribution to coronary artery disease in non-diabetic subjects. J Formos Med Assoc, 2004. 103(4): p. 317-20.
20.Onat, A., et al., Metabolic syndrome: major impact on coronary risk in a population with low cholesterol levels--a prospective and cross-sectional evaluation. Atherosclerosis, 2002. 165(2): p. 285-92.
21.Riahi, S.M., et al., Patterns of clustering of the metabolic syndrome components and its association with coronary heart disease in the Multi-Ethnic Study of Atherosclerosis (MESA): A latent class analysis. Int J Cardiol, 2018. 271: p. 13-18.
22.Ford, E.S., The metabolic syndrome and mortality from cardiovascular disease and all-causes: findings from the National Health and Nutrition Examination Survey II Mortality Study. Atherosclerosis, 2004. 173(2): p. 309-14.
23.Sanada, K., et al., Adverse effects of coexistence of sarcopenia and metabolic syndrome in Japanese women. Eur J Clin Nutr, 2012. 66(10): p. 1093-8.
24.Ishii, S., et al., Metabolic syndrome, sarcopenia and role of sex and age: cross-sectional analysis of Kashiwa cohort study. PLoS One, 2014. 9(11): p. e112718.
25.Binkley, N. and B. Buehring, Beyond FRAX: it's time to consider "sarco-osteopenia". J Clin Densitom, 2009. 12(4): p. 413-6.
26.Ormsbee, M.J., et al., Osteosarcopenic obesity: the role of bone, muscle, and fat on health. J Cachexia Sarcopenia Muscle, 2014. 5(3): p. 183-92.
27.Srikanthan, P., A.L. Hevener, and A.S. Karlamangla, Sarcopenia exacerbates obesity-associated insulin resistance and dysglycemia: findings from the National Health and Nutrition Examination Survey III. PLoS One, 2010. 5(5): p. e10805.
28.Roubenoff, R., Sarcopenic obesity: the confluence of two epidemics. Obes Res, 2004. 12(6): p. 887-8.
29.Stenholm, S., et al., Sarcopenic obesity: definition, cause and consequences. Curr Opin Clin Nutr Metab Care, 2008. 11(6): p. 693-700.
30.Choi, K.M., Sarcopenia and sarcopenic obesity. Korean J Intern Med, 2016. 31(6): p. 1054-1060.
31.Goodpaster, B.H., et al., Skeletal muscle lipid content and insulin resistance: evidence for a paradox in endurance-trained athletes. J Clin Endocrinol Metab, 2001. 86(12): p. 5755-61.
32.Amati, F., et al., Skeletal muscle triglycerides, diacylglycerols, and ceramides in insulin resistance: another paradox in endurance-trained athletes? Diabetes, 2011. 60(10): p. 2588-97.
33.Deen, D., Metabolic syndrome: time for action. Am Fam Physician, 2004. 69(12): p. 2875-82.
34.Di Daniele, N., et al., Impact of Mediterranean diet on metabolic syndrome, cancer and longevity. Oncotarget, 2017. 8(5): p. 8947-8979.
35.Barazzoni, R., et al., Sarcopenic obesity: Time to meet the challenge. Clin Nutr, 2018. 37(6 Pt A): p. 1787-1793.
36.Magnani, J.W., et al., Health Literacy and Cardiovascular Disease: Fundamental Relevance to Primary and Secondary Prevention: A Scientific Statement From the American Heart Association. Circulation, 2018. 138(2): p. e48-e74.
37.Aggarwal, M., B. Aggarwal, and J. Rao, Integrative Medicine for Cardiovascular Disease and Prevention. Med Clin North Am, 2017. 101(5): p. 895-923.
38.Topol, E.J., Current status and future prospects for acute myocardial infarction therapy. Circulation, 2003. 108(16 Suppl 1): p. Iii6-13.
39.Benjamin, E.J., et al., Heart Disease and Stroke Statistics-2019 Update: A Report From the American Heart Association. Circulation, 2019. 139(10): p. e56-e528.
40.Chioncel, O., et al., Epidemiology and one-year outcomes in patients with chronic heart failure and preserved, mid-range and reduced ejection fraction: an analysis of the ESC Heart Failure Long-Term Registry. Eur J Heart Fail, 2017. 19(12): p. 1574-1585.
41.Taylor, C.J., et al., Trends in survival after a diagnosis of heart failure in the United Kingdom 2000-2017: population based cohort study. Bmj, 2019. 364: p. l223.
42.Levy, D., et al., Long-term trends in the incidence of and survival with heart failure. N Engl J Med, 2002. 347(18): p. 1397-402.
43.Sharpe, N., Cardiac remodeling in coronary artery disease. Am J Cardiol, 2004. 93(9a): p. 17b-20b.
44.Schoenfeld, M., et al., The existence of myocardial repair: mechanistic insights and enhancements. Cardiol Rev, 2013. 21(3): p. 111-20.
45.Fedak, P.W., Paracrine effects of cell transplantation: modifying ventricular remodeling in the failing heart. Semin Thorac Cardiovasc Surg, 2008. 20(2): p. 87-93.
46.Martin, K., C.L. Huang, and N.M. Caplice, Regenerative approaches to post-myocardial infarction heart failure. Curr Pharm Des, 2014. 20(12): p. 1930-40.
47.Ulloa-Montoya, F., C.M. Verfaillie, and W.S. Hu, Culture systems for pluripotent stem cells. J Biosci Bioeng, 2005. 100(1): p. 12-27.
48.Boyer, L.A., et al., Core transcriptional regulatory circuitry in human embryonic stem cells. Cell, 2005. 122(6): p. 947-56.
49.Yamanaka, S., Strategies and new developments in the generation of patient-specific pluripotent stem cells. Cell Stem Cell, 2007. 1(1): p. 39-49.
50.Arenas, E., Towards stem cell replacement therapies for Parkinson's disease. Biochem Biophys Res Commun, 2010. 396(1): p. 152-6.
51.Sun, A.X. and E.K. Tan, Towards better cellular replacement therapies in Parkinson disease. J Neurosci Res, 2018. 96(2): p. 219-221.
52.Tang, X.L., et al., Cardiac progenitor cells and bone marrow-derived very small embryonic-like stem cells for cardiac repair after myocardial infarction. Circ J, 2010. 74(3): p. 390-404.
53.Zuba-Surma, E.K., et al., Very small embryonic-like stem cells: biology and therapeutic potential for heart repair. Antioxid Redox Signal, 2011. 15(7): p. 1821-34.
54.Fehrer, C. and G. Lepperdinger, Mesenchymal stem cell aging. Exp Gerontol, 2005. 40(12): p. 926-30.
55.Samsonraj, R.M., et al., Concise Review: Multifaceted Characterization of Human Mesenchymal Stem Cells for Use in Regenerative Medicine. Stem Cells Transl Med, 2017. 6(12): p. 2173-2185.
56.Brown, C., et al., Mesenchymal stem cells: Cell therapy and regeneration potential. J Tissue Eng Regen Med, 2019. 13(9): p. 1738-1755.
57.Docheva, D., et al., Human mesenchymal stem cells in contact with their environment: surface characteristics and the integrin system. J Cell Mol Med, 2007. 11(1): p. 21-38.
58.Baksh, D., L. Song, and R.S. Tuan, Adult mesenchymal stem cells: characterization, differentiation, and application in cell and gene therapy. J Cell Mol Med, 2004. 8(3): p. 301-16.
59.Heo, J.S., et al., Comparison of molecular profiles of human mesenchymal stem cells derived from bone marrow, umbilical cord blood, placenta and adipose tissue. Int J Mol Med, 2016. 37(1): p. 115-25.
60.Pittenger, M.F., et al., Multilineage potential of adult human mesenchymal stem cells. Science, 1999. 284(5411): p. 143-7.
61.Ullah, I., R.B. Subbarao, and G.J. Rho, Human mesenchymal stem cells - current trends and future prospective. Biosci Rep, 2015. 35(2).
62.Aghaee-Afshar, M., et al., Potential of human umbilical cord matrix and rabbit bone marrow-derived mesenchymal stem cells in repair of surgically incised rabbit external anal sphincter. Dis Colon Rectum, 2009. 52(10): p. 1753-61.
63.Alvarez-Dolado, M., et al., Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature, 2003. 425(6961): p. 968-73.
64.Fukuda, K., Development of regenerative cardiomyocytes from mesenchymal stem cells for cardiovascular tissue engineering. Artif Organs, 2001. 25(3): p. 187-93.
65.Troyer, D.L. and M.L. Weiss, Wharton's jelly-derived cells are a primitive stromal cell population. Stem Cells, 2008. 26(3): p. 591-9.
66.Ding, D.C., et al., Human umbilical cord mesenchymal stem cells: a new era for stem cell therapy. Cell Transplant, 2015. 24(3): p. 339-47.
67.Wang, H.S., et al., Mesenchymal stem cells in the Wharton's jelly of the human umbilical cord. Stem Cells, 2004. 22(7): p. 1330-7.
68.Prasanna, S.J., et al., Pro-inflammatory cytokines, IFNgamma and TNFalpha, influence immune properties of human bone marrow and Wharton jelly mesenchymal stem cells differentially. PLoS One, 2010. 5(2): p. e9016.
69.Can, A. and S. Karahuseyinoglu, Concise review: human umbilical cord stroma with regard to the source of fetus-derived stem cells. Stem Cells, 2007. 25(11): p. 2886-95.
70.Magatti, M., et al., Human amnion mesenchyme harbors cells with allogeneic T-cell suppression and stimulation capabilities. Stem Cells, 2008. 26(1): p. 182-92.
71.Rasmusson, I., et al., Mesenchymal stem cells inhibit lymphocyte proliferation by mitogens and alloantigens by different mechanisms. Exp Cell Res, 2005. 305(1): p. 33-41.
72.Corsello, T., et al., Wharton's Jelly Mesenchymal Stromal Cells from Human Umbilical Cord: a Close-up on Immunomodulatory Molecules Featured In Situ and In Vitro. Stem Cell Rev Rep, 2019. 15(6): p. 900-918.
73.Weiss, M.L., et al., Immune properties of human umbilical cord Wharton's jelly-derived cells. Stem Cells, 2008. 26(11): p. 2865-74.
74.Rosa, F., et al., Mesoderm induction in amphibians: the role of TGF-beta 2-like factors. Science, 1988. 239(4841 Pt 1): p. 783-5.
75.Sanford, L.P., et al., TGFbeta2 knockout mice have multiple developmental defects that are non-overlapping with other TGFbeta knockout phenotypes. Development, 1997. 124(13): p. 2659-70.
76.Bartram, U., et al., Double-outlet right ventricle and overriding tricuspid valve reflect disturbances of looping, myocardialization, endocardial cushion differentiation, and apoptosis in TGF-beta(2)-knockout mice. Circulation, 2001. 103(22): p. 2745-52.
77.Singla, D.K. and B. Sun, Transforming growth factor-beta2 enhances differentiation of cardiac myocytes from embryonic stem cells. Biochem Biophys Res Commun, 2005. 332(1): p. 135-41.
78.Makkar, R.R., et al., Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet, 2012. 379(9819): p. 895-904.
79.Sadat, K., et al., The effect of bone marrow mononuclear stem cell therapy on left ventricular function and myocardial perfusion. J Nucl Cardiol, 2014. 21(2): p. 351-67.
80.The Lancet, E., Retraction-Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet, 2019. 393(10176): p. 1084.
81.Bolli, R., et al., Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet, 2011. 378(9806): p. 1847-57.
82.Nakada, Y., et al., Hypoxia induces heart regeneration in adult mice. Nature, 2017. 541(7636): p. 222-227.
83.Senyo, S.E., et al., Mammalian heart renewal by pre-existing cardiomyocytes. Nature, 2013. 493(7432): p. 433-6.
84.Ellison, G.M., et al., Adult c-kit(pos) cardiac stem cells are necessary and sufficient for functional cardiac regeneration and repair. Cell, 2013. 154(4): p. 827-42.
85.Zaruba, M.M., et al., Cardiomyogenic potential of C-kit(+)-expressing cells derived from neonatal and adult mouse hearts. Circulation, 2010. 121(18): p. 1992-2000.
86.van Berlo, J.H., et al., c-kit+ cells minimally contribute cardiomyocytes to the heart. Nature, 2014. 509(7500): p. 337-41.
87.Liu, J., et al., Early stem cell engraftment predicts late cardiac functional recovery: preclinical insights from molecular imaging. Circ Cardiovasc Imaging, 2012. 5(4): p. 481-90.
88.Segers, V.F., et al., Local delivery of protease-resistant stromal cell derived factor-1 for stem cell recruitment after myocardial infarction. Circulation, 2007. 116(15): p. 1683-92.
89.Wang, K., et al., Overexpression of SDF-1α enhanced migration and engraftment of cardiac stem cells and reduced infarcted size via CXCR4/PI3K pathway. PLoS One, 2012. 7(9): p. e43922.
90.Zeng, H., L. Li, and J.X. Chen, Overexpression of angiopoietin-1 increases CD133+/c-kit+ cells and reduces myocardial apoptosis in db/db mouse infarcted hearts. PLoS One, 2012. 7(4): p. e35905.
91.Zhang, Y., et al., Targeted delivery of human VEGF gene via complexes of magnetic nanoparticle-adenoviral vectors enhanced cardiac regeneration. PLoS One, 2012. 7(7): p. e39490.
92.Angeli, F.S., et al., Injection of human bone marrow and mononuclear cell extract into infarcted mouse hearts results in functional improvement. Open Cardiovasc Med J, 2012. 6: p. 38-43.
93.Yeghiazarians, Y., et al., Injection of bone marrow cell extract into infarcted hearts results in functional improvement comparable to intact cell therapy. Mol Ther, 2009. 17(7): p. 1250-6.
94.Duran, J.M., et al., Bone-derived stem cells repair the heart after myocardial infarction through transdifferentiation and paracrine signaling mechanisms. Circ Res, 2013. 113(5): p. 539-52.
95.Wang, H.-S., et al., Mesenchymal Stem Cells in the Wharton's Jelly of the Human Umbilical Cord. Stem Cells, 2004. 22(7): p. 1330-1337.
96.Singla, D.K., et al., TGF- 2 treatment enhances cytoprotective factors released from embryonic stem cells and inhibits apoptosis in infarcted myocardium. AJP: Heart and Circulatory Physiology, 2011. 300(4): p. H1442-H1450.
97.Kumar, D. and B. Sun, Transforming growth factor-β2 enhances differentiation of cardiac myocytes from embryonic stem cells. Biochemical and Biophysical Research Communications, 2005. 332(1): p. 135-141.
98.Mazo, M., et al., Transplantation of Mesenchymal Stem Cells Exerts a Greater Long-Term Effect Than Bone Marrow Mononuclear Cells in a Chronic Myocardial Infarction Model in Rat. Cell Transplantation, 2010. 19(3): p. 313-328.
99.Mias, C., et al., Ex Vivo Pretreatment with Melatonin Improves Survival, Proangiogenic/Mitogenic Activity, and Efficiency of Mesenchymal Stem Cells Injected into Ischemic Kidney. Stem Cells, 2008. 26(7): p. 1749-1757.
100.Lin, Y.D., et al., Intramyocardial Peptide Nanofiber Injection Improves Postinfarction Ventricular Remodeling and Efficacy of Bone Marrow Cell Therapy in Pigs. Circulation, 2010. 122(11_suppl_1): p. S132-S141.
101.Leor, J., et al., Human umbilical cord blood-derived CD133+ cells enhance function and repair of the infarcted myocardium. Stem Cells, 2006. 24(3): p. 772-80.
102.Grauss, R.W., et al., Mesenchymal stem cells from ischemic heart disease patients improve left ventricular function after acute myocardial infarction. AJP: Heart and Circulatory Physiology, 2007. 293(4): p. H2438-H2447.
103.Agbulut, O., et al., Comparison of human skeletal myoblasts and bone marrow-derived CD133+ progenitors for the repair of infarcted myocardium. J Am Coll Cardiol, 2004. 44(2): p. 458-63.
104.Fioretto, P., Y. Kim, and M. Mauer, Diabetic nephropathy as a model of reversibility of established renal lesions. Curr Opin Nephrol Hypertens, 1998. 7(5): p. 489-94.
105.Mangi, A.A., et al., Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nat Med, 2003. 9(9): p. 1195-201.
106.Karahuseyinoglu, S., et al., Biology of stem cells in human umbilical cord stroma: in situ and in vitro surveys. Stem Cells, 2007. 25(2): p. 319-31.
107.Marino, L., et al., Mesenchymal Stem Cells from the Wharton's Jelly of the Human Umbilical Cord: Biological Properties and Therapeutic Potential. Int J Stem Cells, 2019. 12(2): p. 218-226.
108.Casiraghi, F., N. Perico, and G. Remuzzi, Mesenchymal stromal cells for tolerance induction in organ transplantation. Hum Immunol, 2018. 79(5): p. 304-313.
109.Hsiao, C.-Y., et al., Transplantation of Wharton's Jelly Mesenchymal Stem Cells to Improve Cardiac Function in Myocardial Infarction Rats. Journal of Biomedical Sciences, 2016. 5: p. 6-7.
110.Kao, S.Y.S., J. F; Wang, H. S; Hsiao, C. Y; Su, C.H; Chen, T. H; Weng, Z. C; Tsai, P. J, Transplantation of Hepatocytelike Cells Derived from Umbilical Cord Stromal Mesenchymal Stem Cells to Treat Acute Liver Failure Rat. Journal Biomedical Sciences, 2015. 2015, 4:1.
111.Chu, K.A., et al., Reversal of bleomycin-induced rat pulmonary fibrosis by a xenograft of human umbilical mesenchymal stem cells from Wharton's jelly. Theranostics, 2019. 9(22): p. 6646-6664.
112.Tsai, P.J., et al., Xenografting of human umbilical mesenchymal stem cells from Wharton's jelly ameliorates mouse spinocerebellar ataxia type 1. Transl Neurodegener, 2019. 8: p. 29.
113.Tsai, P.J., et al., Transplantation of insulin-producing cells from umbilical cord mesenchymal stem cells for the treatment of streptozotocin-induced diabetic rats. J Biomed Sci, 2012. 19(1): p. 47.
114.Tsai, P.J., et al., Undifferentiated Wharton's Jelly Mesenchymal Stem Cell Transplantation Induces Insulin-Producing Cell Differentiation and Suppression of T-Cell-Mediated Autoimmunity in Nonobese Diabetic Mice. Cell Transplant, 2015. 24(8): p. 1555-70.
115.Wang, H.S., et al., Transplantation of insulin-producing cells derived from umbilical cord stromal mesenchymal stem cells to treat NOD mice. Cell Transplant, 2011. 20(3): p. 455-66.
116.Wang, H.S., et al., Transplantation of insulin producing cells derived from umbilical cord stromal mesenchymal stem cells to treat NOD mice. Cell Transplant, 2011.
117.Verdaguer, J., et al., Spontaneous autoimmune diabetes in monoclonal T cell nonobese diabetic mice. J Exp Med, 1997. 186(10): p. 1663-76.
118.Bai, L., G. Meredith, and B.E. Tuch, Glucagon-like peptide-1 enhances production of insulin in insulin-producing cells derived from mouse embryonic stem cells. J Endocrinol, 2005. 186(2): p. 343-52.
119.Thulé, P.M. and J.M. Liu, Regulated hepatic insulin gene therapy of STZ-diabetic rats. Gene Ther, 2000. 7(20): p. 1744-52.
120.Krabbe, C., J. Zimmer, and M. Meyer, Neural transdifferentiation of mesenchymal stem cells--a critical review. Apmis, 2005. 113(11-12): p. 831-44.
121.Phinney, D.G. and D.J. Prockop, Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair--current views. Stem Cells, 2007. 25(11): p. 2896-902.
122.Copp, D.H. and B. Cheney, Calcitonin-a hormone from the parathyroid which lowers the calcium-level of the blood. Nature, 1962. 193: p. 381-2.
123.Chambers, T.J., N.A. Athanasou, and K. Fuller, Effect of parathyroid hormone and calcitonin on the cytoplasmic spreading of isolated osteoclasts. J Endocrinol, 1984. 102(3): p. 281-6.
124.Hurley, D.L., et al., Axial and appendicular bone mineral density in patients with long-term deficiency or excess of calcitonin. N Engl J Med, 1987. 317(9): p. 537-41.
125.Wüster, C., et al., Long-term excess of endogenous calcitonin in patients with medullary thyroid carcinoma does not affect bone mineral density. J Endocrinol, 1992. 134(1): p. 141-7.
126.Naot, D., D.S. Musson, and J. Cornish, The Activity of Peptides of the Calcitonin Family in Bone. Physiol Rev, 2019. 99(1): p. 781-805.
127.Davey, R.A. and D.M. Findlay, Calcitonin: physiology or fantasy? J Bone Miner Res, 2013. 28(5): p. 973-9.
128.Hoff, A.O., et al., Increased bone mass is an unexpected phenotype associated with deletion of the calcitonin gene. J Clin Invest, 2002. 110(12): p. 1849-57.
129.Keller, J., et al., Calcitonin controls bone formation by inhibiting the release of sphingosine 1-phosphate from osteoclasts. Nat Commun, 2014. 5: p. 5215.
130.Khosla, S. and L.C. Hofbauer, Osteoporosis treatment: recent developments and ongoing challenges. Lancet Diabetes Endocrinol, 2017. 5(11): p. 898-907.
131.Baron, R. and E. Hesse, Update on bone anabolics in osteoporosis treatment: rationale, current status, and perspectives. J Clin Endocrinol Metab, 2012. 97(2): p. 311-25.
132.Kuo, Y.J., et al., Calcitonin inhibits SDCP-induced osteoclast apoptosis and increases its efficacy in a rat model of osteoporosis. PLoS One, 2012. 7(7): p. e40272.
133.Baron, R. and M. Kneissel, WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat Med, 2013. 19(2): p. 179-92.
134.Baron, R. and F. Gori, Targeting WNT signaling in the treatment of osteoporosis. Curr Opin Pharmacol, 2018. 40: p. 134-141.
135.Maruotti, N., et al., Systemic effects of Wnt signaling. J Cell Physiol, 2013. 228(7): p. 1428-32.
136.Boland, G.M., et al., Wnt 3a promotes proliferation and suppresses osteogenic differentiation of adult human mesenchymal stem cells. J Cell Biochem, 2004. 93(6): p. 1210-30.
137.Day, T.F., et al., Wnt/beta-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev Cell, 2005. 8(5): p. 739-50.
138.Baksh, D., G.M. Boland, and R.S. Tuan, Cross-talk between Wnt signaling pathways in human mesenchymal stem cells leads to functional antagonism during osteogenic differentiation. J Cell Biochem, 2007. 101(5): p. 1109-24.
139.Ota, K., et al., TGF-β induces Wnt10b in osteoclasts from female mice to enhance coupling to osteoblasts. Endocrinology, 2013. 154(10): p. 3745-52.
140.Zheng, C.M., et al., Osteoclast-Released Wnt-10b Underlies Cinacalcet Related Bone Improvement in Chronic Kidney Disease. Int J Mol Sci, 2019. 20(11).
141.Lu, C.L., et al., Association of Anabolic Effect of Calcitriol with Osteoclast-Derived Wnt 10b Secretion. Nutrients, 2018. 10(9).
142.Hsiao, C.Y., et al., Comparison between the therapeutic effects of differentiated and undifferentiated Wharton's jelly mesenchymal stem cells in rats with streptozotocin-induced diabetes. World J Stem Cells, 2020. 12(2): p. 139-151.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top