跳到主要內容

臺灣博碩士論文加值系統

(44.210.85.190) 您好!臺灣時間:2022/11/30 02:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔣騏玄
研究生(外文):CHIANG, CHI-HSUAN
論文名稱:運用簡群演算法求解國軍災害防救預置兵力部署問題
論文名稱(外文):Using Simplified Swarm Optimization Method to Optimize the Military Deployment for Short-Notice Emergency Evacuation
指導教授:賴智明
指導教授(外文):LAI, CHYH-MING
口試委員:孟昭宇劉達生
口試委員(外文):MENG, JAU-YULIU, TA-SHENG
口試日期:2020-05-12
學位類別:碩士
校院名稱:國防大學
系所名稱:資源管理及決策研究所
學門:商業及管理學門
學類:其他商業及管理學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:96
中文關鍵詞:災害防救預置兵力設施選址最佳化簡群演算法
外文關鍵詞:Disaster prevention and rescuePrepositioned forcesFacility locationThe optimalSimplified Swarm Optimization
相關次數:
  • 被引用被引用:0
  • 點閱點閱:108
  • 評分評分:
  • 下載下載:31
  • 收藏至我的研究室書目清單書目收藏:0
2010年,國防法將災害防救規範為重大任務之一,國軍在災害防救工作上自此扮演舉足輕重的角色。為減少災害發生所造成之損失,國軍秉持「離災優於防災」之原則,擬定「超前部署、預置兵力、隨時防救」的防災政策。在災害應變中心一級開設的同時,國軍以營區為單位,將部分兵力預置至災害潛勢區之週邊,當預判災害可能發生時,即刻投入預置之兵力協助當地居民撤離危險地區,以爭取時效將災害損失降至最低。因此,災害防救兵力部署的良窳涉及到兩個問題,一是易災點如何分配給母體營,二是如何選出向前部署之預置點;前者攸關母體營的派遣能力,而後者則需考量預置點的遭災風險及與母體營的距離成本。為此,本研究參考覆蓋設施選址問題,考量滿足易災點的救災需求與母體營的派遣能力之前提下,同時追求最小化預置兵力點的遭災風險與距離成本,以建構國軍預置兵力部署的最佳化模型。
在求解方法上,透過模糊邏輯方法建構風險評估模型,並計算各預置點的風險值,再以簡群演算法為基礎,發展可求解覆蓋問題數學模型之演算法,結果顯示,中、大型規模問題使用簡群演算法求解能確保在可接受時間內求得近似最佳解,以提供決策者決策之參考。

In 2010, the national defense law made disaster prevention and rescue a major task, and the armed forces have since played a pivotal role in disaster prevention and rescue.In order to reduce the losses caused by disasters, the armed forces have adhered to the principle of "avoiding disasters is better than preventing disasters", and have formulated the disaster prevention policy of "deploying troops in advance, preparing troops in advance, and preventing and saving disasters at any time".At the same time of the establishment of the disaster response center, the Chinese army will pre-set part of its forces in the surrounding areas of the potential disaster areas by taking the barracks as units. When the disaster is predicted to happen, the pre-set forces will be immediately deployed to assist the local residents to evacuate from the dangerous areas, so as to minimize the disaster losses in time.Therefore, the influence of disaster prevention and rescue force deployment depends on two problems: how to allocate the vulnerable points to the mother battalion and how to select the preset points for the forward deployment.The former is related to the dispatch capacity of the parent camp, while the latter needs to consider the disaster risk of the preset point and the cost of the distance from the parent camp.For this reason, this study refers to the problem of covering facility location, considers the disaster relief needs of vulnerable points and the dispatch capacity of parent battalions, and at the same time seeks to minimize the disaster risk and distance cost of preset force points, so as to construct the optimal model of military preset force deployment.
On the solving method, through the method of fuzzy logic construct risk assessment model, and calculate the risk of each preset point, and then on the basis of JianQun algorithms, development can cover problem solving mathematical model of the algorithm, the results show that the medium and large scale problems using Simplified Swarm Optimization solving can ensure the approximate optimal solution is obtained in an acceptable time, in order to provide decision-makers decision-making reference.

摘要
ABSTRACT
目次
表次
圖次
第一章 緒論
1.1 研究背景
1.2 研究動機與目的
1.3 研究範圍與限制
1.4 研究流程
第二章 文獻探討
2.1 救災設施選址問題
2.1.1 救災設施選址問題定義
2.1.2 覆蓋問題選址模型
2.1.3 救災設施選址文獻回顧
2.2 覆蓋問題求解方法
2.2.1 精確解
2.2.2 進化式演算法
2.3 風險評估
2.3.1 風險定義
2.3.2 自然屬性風險
2.3.3 遭災風險評估方式
2.4 小結
第三章 研究方法
3.1 模糊邏輯
3.1.1 模糊邏輯概念
3.1.2 模糊邏輯的決策流程
3.1.3 MATLAB模糊邏輯工具箱
3.2 簡群演算法
3.2.1 參數與符號說明
3.2.2 更新機制
3.2.3 簡群演算法的應用
第四章 模型建構
4.1 假設及符號說明
4.2 模型建構原則
4.3 模型說明
第五章 求解方法建構
5.1 模糊邏輯計算風險值流程
5.1.1 風險指標資料蒐集與整理
5.1.2 建構風險評估模型
5.1.3 運用模型計算預置點風險值
5.2 簡群演算法計算流程
5.2.1 問題範例
5.2.2 解編碼
5.2.3 計算適應函數值
5.2.4 更新解群體
5.3 求解流程圖
第六章 數值分析
6.1 最佳化台南市災防兵力部署
6.2 驗證風險對兵力部署之影響
6.3 隨機問題求解
第七章 結論與建議
7.1 研究貢獻
7.2 未來研究建議
參考文獻
中文文獻
英文文獻
附錄
附錄A 座標統計表
附錄B 座標轉換統計表
附錄C 易災點-母體營距離統計表
附錄D 易災點-預置點距離統計表
附錄E 預置點-母體營距離統計表

中文文獻
國防部(2018),中華民國 107年國防報告書,台北市:國防部。
國防部(2017),國軍協助災害防救辦法,台北市:國防部。
蕭英煜(2014),災害防救應變兵力派遣與預置之研究-以災害潛勢地區民眾撤離為例。
經濟部水利署(2018),107年水災風險圖資決策支援技術精進研發,台北市:經濟部。
英文文獻
Ablanedo-Rosas, J.H., Gao, H., Alidaee, B., & Teng, W.-Y. (2009). Allocation of emergency and recovery centres in Hidalgo, Mexico. International Journal of Services Sciences, 2(2), 206-218.
Annex, I. (2012). Managing the risks of extreme events and disasters to advance climate change adaptation. Sciences, 10, 97-104.
Azizipanah Abarghooee, R. (2013). A new hybrid bacterial foraging and simplified swarm optimization algorithm for practical optimal dynamic load dispatch. International Journal of Electrical Power & Energy Systems, 49, 414-429.
Balas, E., & Carrera, M.C. (1996). A dynamic subgradient-based branch-and-bound procedure for set covering. Operations research, 44(6), 875-890.
Balcik, B., & Beamon, B.M. (2008). Facility location in humanitarian relief. International Journal of Logistics, 11(2), 101-121.
Berman, O., & Krass, D. (2002). The generalized maximal covering location problem. Computers & Operations Research, 29(6), 563-581.
Caunhye, A.M., Nie, X., & Pokharel, S. (2012). Optimization models in emergency logistics: A literature review. Socio-economic planning sciences, 46(1), 4-13.
Chang, T., Kong, D., Hao, N., Xu, K., & Yang, G. (2018). Solving the dynamic weapon target assignment problem by an improved artificial bee colony algorithm with heuristic factor initialization. Applied Soft Computing, 70, 845-863.
Chung, Y.Y., & Wahid, N. (2012). A hybrid network intrusion detection system using simplified swarm optimization (SSO). Applied Soft Computing, 12(9), 3014-3022.
Church, R., & Velle, C.R. (1974). The maximal covering location problem. Papers in regional science, 32(1), 101-118.
Debnath, S.B.C., Shill, P.C., & Murase, K. (2013). Particle swarm optimization based adaptive strategy for tuning of fuzzy logic controller. International Journal of Artificial Intelligence & Applications, 4(1), 37.
Dekle, J., Lavieri, M.S., Martin, E., Emir-Farinas, H., & Francis, R.L. (2005). A Florida county locates disaster recovery centers. Interfaces, 35(2), 133-139.
Dorigo, M., Caro, G.D., & Gambardella, L.M. (1999). Ant algorithms for discrete optimization. Artificial life, 5(2), 137-172.
Elkady, S.K., & Abdelsalam, H.M. (2016). A modified multi-objective particle swarm optimisation algorithm for healthcare facility planning. International Journal of Business and Systems Research, 10(1), 1-22.
Farahani, R.Z., Asgari, N., Heidari, N., Hosseininia, M., & Goh, M. (2012). Covering problems in facility location: A review. Computers & Industrial Engineering, 62(1), 368-407.
Galvão, R.D., & ReVelle, C. (1996). A Lagrangean heuristic for the maximal covering location problem. European Journal of Operational Research, 88(1), 114-123.
Gama, M., Scaparra, M.P., & Santos, B. (2013). Optimal location of shelters for mitigating urban floods. Proceedings of the EWGT.
Godinho Filho, M., Barco, C.F., & Neto, R.F.T. (2014). Using Genetic Algorithms to solve scheduling problems on flexible manufacturing systems (FMS): a literature survey, classification and analysis. Flexible Services and Manufacturing Journal, 26(3), 408-431.
Guner, A.R., & Sevkli, M. (2008). A discrete particle swarm optimization algorithm for uncapacitated facility location problem. Journal of Artificial Evolution and Applications, 2008.
Haghani, A. (1996). Capacitated maximum covering location models: Formulations and solution procedures. Journal of advanced transportation, 30(3), 101-136.
Hakimi, S.L. (1964). Optimum locations of switching centers and the absolute centers and medians of a graph. Operations research, 12(3), 450-459.
Hakimi, S.L. (1965). Optimum distribution of switching centers in a communication network and some related graph theoretic problems. Operations research, 13(3), 462-475.
Hauff, C. (2010). Predicting the effectiveness of queries and retrieval systems. SIGIR Forum,
Haynes, J. (1895). Risk as an Economic Factor. The Quarterly Journal of Economics (1886-1906), 409.
Huang, C.L. (2015). A particle-based simplified swarm optimization algorithm for reliability redundancy allocation problems. Reliability Engineering & System Safety, 142, 221-230.
Huang, C.L., & Yeh, W.C. (2014). A new K-harmonic means based simplified swarm optimization for data mining. 2014 IEEE Symposium on Swarm Intelligence,
Jia, H., Ordóñez, F., & Dessouky, M.M. (2007). Solution approaches for facility location of medical supplies for large-scale emergencies. Computers & Industrial Engineering, 52(2), 257-276.
Karaboga, D., & Akay, B. (2009). A comparative study of artificial bee colony algorithm. Applied mathematics and computation, 214(1), 108-132.
Karatas, M., & Yakıcı, E. (2018). An iterative solution approach to a multi-objective facility location problem. Applied Soft Computing, 62, 272-287.
Lai, C.M. (2019). Integrating simplified swarm optimization with AHP for solving capacitated military logistic depot location problem. Applied Soft Computing, 78, 1-12.
Lai, C.M., Chiu, C.C., Liu, W.C., & Yeh, W.C. (2019). A novel nondominated sorting simplified swarm optimization for multi-stage capacitated facility location problems with multiple quantitative and qualitative objectives. Applied Soft Computing, 84, 105684.
Lai, C.M., & Yeh, W.C. (2016). Two-stage simplified swarm optimization for the redundancy allocation problem in a multi-state bridge system. Reliability Engineering & System Safety, 156, 148-158.
Lai, C.M., Yeh, W.C., & Chang, C.Y. (2016). Gene selection using information gain and improved simplified swarm optimization. Neurocomputing, 218, 331-338.
Lančinskas, A., Fernández, P., Pelegín, B., & Žilinskas, J. (2017). Improving solution of discrete competitive facility location problems. Optimization Letters, 11(2), 259-270.
Manquinho, V.M., & Marques-Silva, J.P. (2002). Search pruning techniques in SAT-based branch-and-bound algorithms for the binate covering problem. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 21(5), 505-516.
Melo, M.T., Nickel, S., & Saldanha-Da-Gama, F. (2009). Facility location and supply chain management–A review. European Journal of Operational Research, 196(2), 401-412.
Meyer, E. (2011). Warehouse pre-positioning for disaster relief in Southern African Development Communities.
Murali, P., Ordóñez, F., & Dessouky, M.M. (2012). Facility location under demand uncertainty: Response to a large-scale bio-terror attack. Socio-economic planning sciences, 46(1), 78-87.
Ng, M., Park, J., & Waller, S.T. (2010). A hybrid bilevel model for the optimal shelter assignment in emergency evacuations. Computer‐Aided Civil and Infrastructure Engineering, 25(8), 547-556.
Pérez Salazar, M.d.R., Mateo Díaz, N.F., García Rodríguez, R., Mar Orozco, C.E., & Cruz Rivero, L. (2015). A genetic algorithm to solve a three-echelon capacitated location problem for a distribution center within a solid waste management system in the northern region of Veracruz, Mexico. Dyna, 82(191), 51-57.
Pan, A. (2010). The applications of maximal covering model in typhoon emergency shelter location problem. 2010 IEEE international conference on industrial engineering and engineering management,
Pirkul, H., & Schilling, D.A. (1991). The maximal covering location problem with capacities on total workload. Management Science, 37(2), 233-248.
Rahmani, A., & MirHassani, S. (2014). A hybrid firefly-genetic algorithm for the capacitated facility location problem. Information Sciences, 283, 70-78.
Rajagopalan, H.K., Saydam, C., & Xiao, J. (2008). A multiperiod set covering location model for dynamic redeployment of ambulances. Computers & Operations Research, 35(3), 814-826.
Salman, F.S., & Yücel, E. (2015). Emergency facility location under random network damage: Insights from the Istanbul case. Computers & Operations Research, 62, 266-281.
Santosa, B., & Kresna, I.G.N.A. (2015). Simulated annealing to solve single stage capacitated warehouse location problem. Procedia Manufacturing, 4, 62-70.
Sathe, A., & Miller-Hooks, E. (2005). Optimizing location and relocation of response units in guarding critical facilities. Transportation Research Record, 1923(1), 127-136.
Solomatine, D., See, L.M., & Abrahart, R. (2009). Data-driven modelling: concepts, approaches and experiences. In Practical hydroinformatics (pp. 17-30). Springer.
Straitiff, S.L., & Cromley, R.G. (2010). Using GIS and K= 3 Central Place Lattices for Efficient Solutions to the Location Set‐Covering Problem in a Bounded Plane. Transactions in GIS, 14(3), 331-349.
Takagi, T., & Sugeno, M. (1985). Fuzzy identification of systems and its applications to modeling and control. IEEE transactions on systems, man, and cybernetics(1), 116-132.
Tretyakova, A., & Seredynski, F. (2013). Application of evolutionary algorithms to maximum lifetime coverage problem in wireless sensor networks. 2013 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum,
Underhill, L. (1994). Optimal and suboptimal reserve selection algorithms. Biological Conservation, 70(1), 85-87.
Uno, T., Katagiri, H., & Kato, K. (2007). An application of particle swarm optimization to bilevel facility location problems with quality of facilities. Asia Pacific Management Review, 12(4), 183.
Valášková, K., Klieštik, T., & Mišánková, M. (2014). The role of fuzzy logic in decision making process. 2014 2nd International Conference on Management Innovation and Business Innovation,
Wang, W.f., LIU, X.l., & GUO, B. (2008). Research on the multi-criteria integrated military support facility location-allocation method [J]. Systems Engineering-Theory & Practice, 5, 20.
Weber, A. (1909). Ueber den standort der industrien (Vol. 1). Рипол Классик.
Ye, M., Wang, J., Huang, J., Xu, S., & Chen, Z. (2012). Methodology and its application for community-scale evacuation planning against earthquake disaster. Natural hazards, 61(3), 881-892.
Yeh, W.-C. (2009). A two-stage discrete particle swarm optimization for the problem of multiple multi-level redundancy allocation in series systems. Expert Systems with Applications, 36(5), 9192-9200.
Yeh, W.C. (2009). A two-stage discrete particle swarm optimization for the problem of multiple multi-level redundancy allocation in series systems. Expert Systems with Applications, 36(5), 9192-9200.
Yeh, W.C. (2012). Novel swarm optimization for mining classification rules on thyroid gland data. Information Sciences, 197, 65-76.
Yeh, W.C. (2013). New parameter-free simplified swarm optimization for artificial neural network training and its application in the prediction of time series. IEEE Transactions on Neural Networks and Learning Systems, 24(4), 661-665.
Yeh, W.C. (2014). Orthogonal simplified swarm optimization for the series–parallel redundancy allocation problem with a mix of components. Knowledge-Based Systems, 64, 1-12.
Yeh, W.C. (2019a). A novel boundary swarm optimization method for reliability redundancy allocation problems. Reliability Engineering & System Safety, 192, 106060.
Yeh, W.C. (2019b). A Novel Generalized Artificial Neural Network for Mining Two-Class Datasets. arXiv preprint arXiv:1910.10461.
Yeh, W.C., Lai, C.M., & Tsai, J.Y. (2019). Simplified swarm optimization for optimal deployment of fog computing system of industry 4.0 smart factory. Journal of Physics: Conference Series,
Yeh, W.C., Lai, C.M., & Tseng, K.C. (2019). Fog computing task scheduling optimization based on multi-objective simplified swarm optimization. Journal of Physics: Conference Series,
Yeh, W.C., Lin, C.M., & Wei, S.C. (2012). Disassembly Sequencing Problems with StochasticProcessing Time using Simplified Swarm Optimization. International Journal of Innovation, Management and Technology, 3(3), 226.
Zadeh, L.A. (1965). Fuzzy sets. Information and control, 8(3), 338-353.
Zadeh, L.A. (1988). Fuzzy logic. Computer, 21(4), 83-93.
Zheng, Y.J., Wang, Y., Ling, H.F., Xue, Y., & Chen, S.Y. (2017). Integrated civilian–military pre-positioning of emergency supplies: A multiobjective optimization approach. Applied Soft Computing, 58, 732-741.
Zimmermann, H.-J. (2010). Fuzzy set theory. Wiley Interdisciplinary Reviews: Computational Statistics, 2(3), 317-332.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top