跳到主要內容

臺灣博碩士論文加值系統

(100.28.0.143) 您好!臺灣時間:2024/07/23 10:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳雅菁
研究生(外文):Ya-Ching Chen
論文名稱:商用抗彈纖維之抗彈性能研究
論文名稱(外文):Study of Performance of Commercial Ballistic Fiber
指導教授:李季燃劉哲原
指導教授(外文):Li,Che-LanLin,Che-Yuan
口試委員:廖炳傑薄慧雲劉哲原
口試委員(外文):Biing-Jye LiawBor, Hui-YunLin,Che-Yuan
口試日期:2020-06-24
學位類別:碩士
校院名稱:南亞技術學院
系所名稱:應用科技研究所
學門:自然科學學門
學類:其他自然科學學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:122
中文關鍵詞:抗彈纖維纖維層積板抗彈性能步槍超高分子量聚乙烯芳香族聚醯胺纖維比能量-吸收動能7.62×51 mm 北約標準彈5.56×45 mm TC74穿甲彈
外文關鍵詞:ballistic fiberriflefiber laminated plateballistic performanceultra-high molecular weight polyethylenearomatic polyamidespecific energy-absorption ability7.62×51mm NATO FMJ5.56×45mm TC74
相關次數:
  • 被引用被引用:0
  • 點閱點閱:201
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
抗彈纖維具有優異的抗彈性能,但抗彈纖維防護材料並非完全抵禦各種類型的子彈,本研究選擇市面上常見的四種抗彈纖維並熱壓積層為纖維積層板,藉由抗彈性能的解析,探討控制步槍級子彈防護能力及耐水環境的材料因子,進而提供抵禦步槍級抗彈纖維積層板的設計依據,本研究最後提出目前最佳抵禦步槍級抗彈纖維積層板的厚度,並提供直接證據。
本研究以超高分子量聚乙烯纖維系統的Endumax XF33纖維、Dyneema HB50纖維以及芳香族聚醯胺纖維系統的Kevlar A258HPP纖維與Goldshield GV2018纖維將其熱壓積層各種厚度的纖維積層板,並相互比對抗彈性能。
對7.62×51 mm 北約標準彈防護能力而言,各類纖維積層板對子彈的動能吸收與積層板的厚度呈現正相關,並且超高分子量聚乙烯纖維積層板具有較高動「比能量-吸收動能」,所以在乾燥環境下Endumax XF33可得到最佳子彈抵抗撞擊的結果。然而,在浸水環境下,Endumax XF33抗彈性能下降50%,推測熱壓條件未能滿足纖維布表面塗佈高結晶化超高分子量聚乙烯薄膜之鍵結條件,使得水可滲入纖維部層間並降低抗彈性能,最終Dyneema HB50得到最佳子彈抵抗撞擊的結果,然而,超高分子量聚乙烯纖維系統仍呈現高度抗彈性能-重量比的優勢。
由於5.56×45 mm TC74穿甲彈彈頭材質,其機械性能與表面破壞能遠高於7.62×51 mm 北約標準彈彈頭材質,亦高於本研究之商用抗彈纖維,使得Endumax XF33積層板抵禦5.56×45 mm TC74穿甲彈侵徹時,比7.62×51 mm 北約標準彈多出厚度5 mm以上的結果。

Ballistic fibers exhibit excellent ballistic performance. However, fiber materials have their limits to protect from various types of bullets. In the present study, four types of ballistic fibers were laminated through hot-press process as fiber laminated plates. With the ballistic performance analysis, the controlling factors for ballistic performance under rifle bullets and water resistance were investigated. The design principles for rifle bullet-proof fiber laminated plate were then proposed. More importantly, the current best thickness of rifle bullet-proof fiber plate was determined; direct experimental evidence was provided.
In the present study, ultra-high molecular weight polyethylene fibers (Endumax XF33, Dyneema HB50) and aromatic polyamide fibers (Kevlar A258HPP, Goldshield GV2018) were prepared as fiber laminated plates through hot-press process and the ballistic performance were evaluated. For comparison purpose, four types of fiber laminated plate with various thickness were also prepared.
For ballistic resistance of 7.62×51 mm NATO FMJ, the kinetic energy of bullet correlates strongly to the thickness of fiber laminated plate. The specific energy-absorption ability of ultra-high molecular weight polyethylene fiber laminated plate was higher than that of aromatic polyamide fiber laminated plate. Particularly, Endumax XF33 has the best ballistic performance in dry condition. However, the ballistic performance of Endumax XF33 decreases by 50% in water condition. It could be speculated that the weak bonding of highly crystallized membrane of ultra-high molecular weight polyethylene due to lower hot-press condition, Then, ballistic performance of wet condition was lower than that of dry condition. Moreover, Dyneema HB50 had the best ballistic performance in water condition. Nevertheless, ultra-high molecular weight polyethylene fibers had the higher ratio of ballistic performance to weight.
Due to different materials of bullet, 5.56×45mm TC74 bullet had higher mechanical properties and surface fracture energy than 7.62×51mm NATO FMJ bullet, also higher than fibers in the present study. The thickness of Endumax XF33 fiber laminated plate against 5.56×45mm TC74 bullet was 5mm higher than that against 7.62×51mm NATO FMJ bullet.

摘要 I
Abstract III
誌謝 V
目錄 VI
表目錄 VIII
圖目錄 IX
第一章 緒論 1
1.1 前言 1
1.2 研究目的及流程 6
第二章 文獻回顧 7
2.1 防護原理 7
2.2 撞擊破壞原理 11
2.3 防彈纖維之發展 14
2.4 抗彈纖維 16
2.4.1玻璃纖維 16
2.4.2 超高分子量聚乙烯纖維 21
2.4.3芳香族聚醯胺纖維 25
2.5 抗彈標準 29
2.6 近代步槍子彈之標準化 34
第三章實驗 40
3.1實驗用品及樣品製備 40
3.1.1實驗藥品 40
3.1.2槍擊測試彈種 43
3.1.3纖維積層板樣品製備 44
3.2 實驗流程 45
3.2.1 纖維積層板槍擊測試(一) 45
3.2.2 纖維積層板防水處理及槍擊測試(二) 46
3.2.3 各牌纖維積層板槍擊測試(三) 47
3.3槍擊測試分析 48
3.3.1 子彈動能量測 48
3.3.2 油泥凹陷量測 50
第四章 結果 52
4.1 各牌纖維積層板對7.62 mm 北約步槍彈槍擊測試結果 52
4.1.1 Endumax XF33纖維積層板(未浸水)槍擊測試結果 52
4.1.2 Dyneema HB50纖維積層板(未浸水)槍擊測試結果 53
4.1.3 Kevlar A258HPP纖維積層板(未浸水)槍擊測試結果 54
4.1.4 Goldshield GV2018纖維積層板(未浸水)槍擊測試結果 55
4.1.5 Endumax XF33纖維積層板(浸水後)槍擊測試結果 56
4.1.6 Dyneema HB50纖維積層板(浸水後)槍擊測試結果 57
4.1.7 Kevlar A258HPP纖維積層板(浸水後)槍擊測試結果 58
4.1.8 Goldshield GV2018纖維積層板(浸水後)槍擊測試結果 59
4.1.9 Endumax XF33 III級纖維積層板(乾燥環境、淋水、浸水)槍擊測試與油泥凹陷之結果 60
4.2 各牌纖維積層板對5.56 mm TC74鋼芯半穿甲彈槍擊測試之結果 62
4.2.1 Endumax XF33纖維積層板槍擊測試結果 62
4.2.1.1 NIJ 0108.01 測試結果 62
4.2.1.2 NIJ 0101.04 測試結果 63
4.2.2 Dyneema HB50纖維積層板槍擊測試結果 66
4.2.2.1 NIJ 0108.01 測試結果 66
4.2.2.1 NIJ 0101.04 測試結果 67
第五章 討論 70
5.1各牌纖維積層板種類之抗彈性能之探討 70
5.1.1不同厚度之各牌纖維積層板與抗彈性能之影響 70
5.1.2不同面密度之各牌纖維積層板與抗彈性能的影響 72
5.2各牌纖維積層板種類在水環境下之抗彈性能之探討 74
5.2.1 各牌纖維積層板厚度在水環境下之抗彈性能之影響 74
5.2.2 各牌纖維積層板面密度在水環境下之抗彈性能之影響 76
5.3 不同彈種對超高分子量聚乙烯纖維積層板侵徹能力之探討 78
5.3.1 5.56 mm鋼芯半穿甲彈對超高分子量聚乙烯纖維積層板侵徹能力之探討 78
5.3.2 5.56 mm鋼芯半穿甲彈與7.62 mm北約標準步槍侵徹能力之探討 80
第六章 結論 82
第七章 未來研究方向 84
參考文獻 85
附錄 89
附錄A各牌纖維積層板對7.62 mm北約步槍彈槍擊測試紀錄(未浸水) 89
附錄B各牌纖維積層板對7.62 mm北約步槍彈槍擊測試紀錄(浸水) 97
附錄C各牌纖維積層板對7.62 mm北約步槍彈槍擊測試圖 105
附錄D各牌纖維積層板對5.56 mm鋼芯半穿甲彈槍槍擊測試圖 109

1.童志祥 (2012)。複合材料多層防護抗彈牲能之研究(碩士論文)。國防大學,桃園市。https://hdl.handle.net/11296/6r33hz
2.Oefese Update. Ceramic & Composite Armor Protection Principles.https://defense-update.com/20051025_armor-principles.html.
3.劉哲原 (2015)。液相燒結碳化矽之機械性能與其抗彈性能研究(博士論文)。國立臺灣大學,台北市。https://hdl.handle.net/11296/pkj9qj
4.胡福增、鄭安吶、張群安 (2001)。聚合物及複合材料的表介面。北京:中國輕工業出版社。
5.袁克儉、金蓮、劉志娟等 (1995)。工程塑料應用,芳綸複合材料抗彈性能的研究,第23卷,40~42頁。
6.bulletproofsupply. Kevlar 29 Style 745 Ballistic Grade Fabric: FREE SHIPPING. https://www.bulletproofsupply.com/kevlar-29-style-745-ballistic-grade-fabric-free-shipping/
7.袁承軍 (2005)。輕兵器,軟質防彈材料現狀及防護衣發展趨勢,第10期,8~9頁。
8.陶育均、邢文灝、李貴琪 (2000)。華岡紡織期刊,改變抗彈織物組織對抗彈性能之影響,第7卷,第3期,259~263。
9.Cunnff. P. M., (1999) ,”Dimensionless parameters for optimization of textile-based body armor systems”,19th lnternational symposium on Ballistics, San Atonio.
10.徐展宏 (2008)。複合抗彈緩衝織物之研製及其性能分析(博士論文)。逢甲大學紡織工程研究所,台中市。https://hdl.handle.net/11296/hp36z6
11.王善元、張汝光等 (1998)。纖維增強複合材料。中國:中國紡織大學出版社。
12.馬振基 (2009)。高分子複合材料 上冊(修訂本),國立編譯館,22~204頁。
13.張以河 (2011)。複合材料學,化學工業出版社,52~53頁。
14.游錫揚 (1997)。纖維複合材料,國彰出版社,27~102頁。
15.Grujicic M.,Pandurangan B.,Zecevic U.,et al. (2007)Ballistic Perfomance of Alimina/S-2 Glass-Reinforced PolymerMatrix Composite Hybrid Lightweight Armor Against Armor Piercing(AP)and Non-AP Projestiles.Multidiscipline Materials and Structures ,3(3):287-312.
16.Defense Technology Information Center. (2013) Blast and Impact Resistant Composite Structures for Navy Ships [R].ADA580372.
17.Boddu V M., Brenmer M W., Patel J S., et al. ( 2016)Energy dissipation and high-strain rate dynamic response of E-glass fiber composiltes with anchored carbon nanotubes . Com-posites Part B ,88: 44-54.
18.朱美芳、朱波等,中國戰略性新興產業-新材料 纖維複合材料,中國:中國材料研究學會組織。
19.王勇、李靜、胡陽旭、郭瑞萍、鄭斌,北京科技信息研究所,第38卷、第12期,146~148頁。
20.Sanborn B., Dileonardi A M., WEER Asooriya T. (2015) 'Tensile Properties of Dyneema SK76 Single Fibers at Multiple Loading Rates Using a Direct Gripping Method1.Journal of Dymamic Behavior of Materials, , 1 (1):4-14.
21.Greenhalgh E S., Bloodworth V M., Iannucci L, et al. (2013) Fractographic observations on Dyneema composites under ballistic impact. Composites: Part A, 44:51-62.
22.Karthikeyan K., Russell B P. (2014) Polyethylene ballistic laminates: F'ailure mechanics and interface effect. Mate-rials & Design, 63: 115-125.
23.O'masta M R., Crayton D H., Deshpande V S., et al. (2015) Mechanisms of penetration in polyethylene reinforced cross-ply laminates. International Journal of Impact Engineering, 86: 249-264.
24.Rosso S D., Iannucci L., Curtis P T. (2016) On the Ballistic Impact Response of Microbraid Reinforced Polymer Composites. Composite Structures, 137: 70-84.
25.Sapozhnikov S B., Kudryavisev O A., Zhikharev M V. (2015) Fragment ballistic performance of homogenous and hybrid thermoplastic composites. International Journal of Impact Engineering, 81:8-6.
26.Zhou Y., Chen X., Welis G. (2014) Infiuence of yarn gripping on the ballistic performance of woven fabrics from ultra-high molecular weight polyethylene fibre. Composites: Part B, 62: 198-204.
27.Nguyen L H., Ryan S., Clmpoeru S J.et al. (2015) The effect of target thickness on the ballistic performance of ultrahigh molecular weight polyethylene composite. International Journal of Impact Engineering, 75: 174-483.
28.Grujicic M., Hariharn A., Pandurangan B., et al. (2012) Fiber-Level Modeling of Dynamic Strength of Kevlar KM2 Ballistic Fabric. Journal of Materials Engineeringand Performance, 21: 1107-1119.
29.Gurjicic M., Pandurangan B., Snipes J S., et al. (2013) Multi-Length Scale-Enriched Continuum-Level Material Model for Kevlar-Fiber-Reinforced Polymer-Matrix Composites. Journal of Materials Engineering and Performance, 22: 681-695.
30.Sorrentino L., Bellini C., Corrado A., et al. (2015) Ballistic performance evaluation of composite laminates in kevlar 29.Procedia Engineering, 88: 255-262.
31.O'brien D J., Chin W K, Long L R, et al. Polymer matrix, (2014)polymer ribbon-reinforced transparent composite mate-rials .Composites: Part A, 56: 161-471.
32.Song B., LU W Y. (2015)Effect of twist on transverse impact re-sponse of ballistic fiber yarns . International Journal of Impact Engineering, 85: 1-4.
33.Wong Y C, Ruan D, Sesson M L. The infiuence of mag-netic field on ballistic performance of aramid fibre and ul-trahigh moleeular weight polyethylene [J]. Materials & De-sign,2014,64: 360-365.
34.Defense Technology Information Center. (2013 ) STIR: 'Tailored In-terfaces for High Strength Composites Across Strain Rates[R] . A602036.
35.Manero A, Gibson J, Frethofer G, et al. (2015) Evaluatingthe effect of nano-particle additives in Kevlar29 impact resistant composites. Composites Science and Technology, 116: 41-49.
36.“Balistic Resisant Protectve Materials”, U. S. (1985) Department of Justice,
NIJ 0108.01.
37.“Balistic Resisant Personal Body Armor”, U.S. (2001)Department of Justice,
NIJ 0101.04.
38.“Balistic Resisant Personal Body Armor”, U. S. (2008) Department of Justice,
NIJ 0101.06.
39.Manero A, Gibson J, Freihofer G, et al. (2015) Evaluating the effect of nano-pparticle additives in Kevlar29 impact resistant composites .Composites Science and Technology,116: 41-49.
40.黃立信、陳子江、汪建良、薄念文、洪建君、劉益銘(2011年)。全民國防教育10-國防科技(高中暨社會教育授課參考),台北市:國防部總政治作戰局,9~12。
41.Wikipedia. M14 Stand-off Munitions Disruptor (SMUD) .http://en.wikipedia.org/wiki/File:M14_afmil.jpg
42.Wikipedia. SLRL1A1.http://en.wikipedia.org/wiki/File:SLRL1A1.jpg
43.Wikimedia commons. HK G3. http://en.wikipedia.org/wiki/File:DCB _Shooting_G3_pictures.jpg
44.Wikipedia. M16 rifle. http://en.wikipedia.org/wiki/M16_rifle
45.華人百科。https://www.itsfun.com.tw/%E5%8C%97%E7%B4%84%E5%BD%88/wiki-2675532
46.Modern Firearms. AK74 / AKS74 / AK74M http://world.guns.ru/assault/rus/ak-74-e.html
47.Modern Firearms. Type 95 / QBZ-95. https://modernfirearms.net/en/assault-rifles/china-assault-rifles/type-95-qbz-95-eng/
48.Wikipedia. 7.62×51mm NATO. https://en.wikipedia.org/wiki/7.62%C3%9751mm_NATO
49.Wikipedia. 5.56×45mm NATO.
https://zh.wikipedia.org/wiki/5.56%C3%9745mm_NATO

電子全文 電子全文(網際網路公開日期:20250715)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top