(3.235.11.178) 您好!臺灣時間:2021/02/26 04:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:朱家恩
研究生(外文):ZHU,JIA-EN
論文名稱:利用濕式及乾式氧化法以去除空氣中氮氧化物
論文名稱(外文):Application of Wet and Dry Oxidation to Abate Nitrogen Oxides in Air
指導教授:吳友平
指導教授(外文):WU,YO-PING
口試委員:吳友平邱求三許文昌
口試委員(外文):WU,YO-PINGCHIOU,CHYOW-SANHSU,WEN-CHANG
口試日期:2020-07-14
學位類別:碩士
校院名稱:國立宜蘭大學
系所名稱:化學工程與材料工程學系碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:56
中文關鍵詞:氮氧化物氧化劑二氧化錳過硫酸鈉
外文關鍵詞:Nitrogen oxidesoxidizing agentmanganese dioxidesodium persulfate
相關次數:
  • 被引用被引用:0
  • 點閱點閱:22
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著工業的快速發展,燃燒石化燃料產生的空氣污染物愈來愈多。其中氮氧化物(NOx)會造成光化學煙霧及酸雨,所以在各國都被列入排放的管制對象。在氮氧化物的控制技術中,依據燃燒階段可分為燃燒前、燃燒中及燃燒後處理,其中在燃燒後處理中的氧化-吸收法為本次研究的項目。由於氮氧化物中的90-95%為一氧化氮(NO),在水中的溶解度極低,所以需要利用強氧化劑將其氧化成二氧化氮(NO2)等易溶於水的氮氧化物再加以吸收。

本篇研究中研究了濕式及乾式的氧化劑,分別是過硫酸鈉及二氧化錳。在濕式氧化法實驗中是透過0.0%、2.5%、5.0%、7.5%、10.0%以及12.5%等不同濃度的過硫酸鈉溶液來探討氧化劑濃度對去除率的影響,並透過改變進料端氮氧化物濃度(12、24、36 mL/min)來研究氮氧化物濃度對氧化劑去除率的影響。在乾式氧化法實驗中首先在室溫、100℃、200℃、300℃、400℃、500℃、600℃等不同溫度下進行實驗,找出最佳的反應溫度。接著在該溫度下研究不同濃度(0%、30%、50%、70%、90%)的二氧化錳對去除率的影響,最後透過改變進料端氮氧化物濃度(12、24、36、48 mL/min)來研究氮氧化物濃度對氧化劑去除率的影響。

經實驗結果得出,在濕式氧化法中,氮氧化物的轉化效率會隨氧化劑濃度升高而增加,當濃度高於10.0%後其轉化效率變化不大;而在改變進流端的氮氧化物濃度後得知,氮氧化物轉化效率會隨進流端氮氧化物濃度的降低而升高。在乾式氧化法中,二氧化錳在300℃時、濃度70%時轉化效率最好,而氮氧化物轉化效率亦會隨進流端氮氧化物濃度的降低而升高。

With the rapid development of industries, the amount of air pollutants produced from burning fossil fuels is also increasing. Among these pollutants, nitrogen oxides (NOx) lead to photochemical smog and acid rain. Therefore, NOx is on the list of emission control regulations in majority of the countries. The NOx control technologies can be categorized in three stages based on the combustion process and include a pre-combustion process, in-combustion process, and post-combustion process. This paper specifically studies the oxidation-absorption method in the post-combustion process. As 90-95% of NOx is nitrogen monoxide (NO), which has an extremely low water solubility, a strong oxidizing agent is necessitated to oxidize it to a more soluble NOx for adsorption; for example, nitrogen dioxide (NO2).

This research includes both wet and dry oxidizing agents, i.e., sodium persulfate and manganese dioxide, respectively. In the wet oxidation experiment, the effect of the sodium persulfate solution concentrations on the removal rate was investigated at concentrations of 0.0%, 2.5%, 5.0%, 7.5%, 10.0% and 12.5%. The effect of NOx concentration on the removal rate of the oxidizing agent was also investigated by changing the NOx concentrations (12, 24, and 36 mL/min) at the feed end. In the dry oxidation experiment, the optimal reaction temperature was first determined by conducting experiments at room temperature, 100℃, 200℃, 300℃, 400℃, 500℃, and 600℃. Then, the effect of different manganese dioxide concentrations (0%, 30%, 50%, 70%, 90%) on the removal rate was investigated. Finally, the effect of NOx concentration on the removal rate of the oxidizing agent was elucidated by changing the NOx concentrations (12, 24, 36, and 48 mL/min) at the feed end.

The results of the experiments show that in the wet oxidizing method, the conversion efficiency of NOx increased as the concentration of the oxidizing agent increased. When the concentration reached 10.0%, there was no significant change in the conversion efficiency. After changing the NOx concentration at the feed end, it was found that the conversion efficiency of NOx increased as NOx concentration decreased. In the dry oxidation method, the conversion efficiency reached the highest with a manganese dioxide concentration of 70% and a temperature of 300℃. The conversion efficiency of NOx also increased as the NOx concentration decreased at the feed end.

摘要 I
Abstract II
目錄 III
圖目錄 VI
表目錄 VII
第 一 章 緒論 1
1.1研究動機 1
1.2研究目標 2
1.2.1過硫酸鈉氧化劑 2
1.2.2二氧化錳氧化劑製作 2
1.2.3利用二氧化錳氧化劑處理煙道氣中的氮氧化物 2
第 二 章 文獻回顧 4
2.1空氣污染物 4
2.1.1空氣品質 5
2.2氮氧化物 6
2.2.1氮氧化物來源 6
2.2.2氮氧化物特性 6
2.2.3氮氧化物的危害 8
2.2.3.1氮氧化物對環境的危害 8
2.2.3.2氮氧化物對人體的危害 9
2.2.4氮氧化物的生成 9
2.2.4.1燃料型氮氧化物(Fuel NOx) 9
2.2.4.2熱力型氮氧化物(Thermal NOx) 10
2.2.4.3快速型氮氧化物(Prompt NOx) 11
2.2.5氮氧化物的檢測 12
2.3氮氧化物處理技術 14
2.3.1燃燒前處理(Pre-combustion treatment ) 14
2.3.2燃燒中處理(Combustion modification) 14
2.3.2.1燃燒系統調整法(Combustion tuning) 15
2.3.2.2燃料分段供給燃燒法(Fuel staged combustion) 15
2.3.2.3空氣分段供給燃燒法(Air staged combustion) 17
2.3.2.4低NOx燃燒器(Low NOx burner, LNB) 17
2.3.2.5水或蒸氣注入法(Water/Steam Injection, WSI) 18
2.3.2.6煙道氣迴流法(Flue gas recirculation, FGR) 18
2.3.2.7降低空氣預熱法(Reduced air preheater, RAP) 18
2.3.2.8降低鍋爐負載法 19
2.3.3燃燒後處理(Post combustion treatment) 19
2.3.3.1乾式處理法 20
2.3.3.1.1選擇性觸媒還原法(Selective catalytic reduction, SCR) 20
2.3.3.1.2選擇性非觸媒還原法(Selective non-catalytic reduction, SNCR) 21
2.3.3.1.3非選擇性觸媒還原法(non-Selective catalytic reduction, NSCR) 23
2.3.3.1.4吸附法(Adsorption) 23
2.3.3.2濕式處理法 24
2.3.3.2.1氧化-吸收法 24
2.3.3.2.2吸收-還原法 24
2.3.3.3氣態氧化法 25
2.3.3.3.1電子光束法(Electron beam, EB) 25
2.3.3.3.2介電質放電法 (Dielectric barrier discharge, DBD) 26
2.4氧化劑 27
2.4.1過硫酸鈉 27
2.4.1.1過硫酸鈉氧化劑 27
2.4.2二氧化錳 28
2.4.2.1二氧化錳氧化劑 29
第 三 章 實驗材料與方法 30
3.1 實驗藥品與氣體 30
3.2 實驗儀器 31
3.3 材料製備 32
3.3.1 過硫酸鈉氧化劑製備 32
3.3.2 二氧化錳氧化劑製備 32
3.4 分析儀器 35
3.4.1手提式煙道分析儀 35
3.5 實驗方法 36
3.5.1過硫酸鈉實驗 36
3.5.2二氧化錳實驗 38
3.6 實驗數據計算 41
3.6.1轉化率計算 41
第 四 章 結果與討論 42
4.1過硫酸鈉氧化劑實驗 42
4.1.1不同氧化劑濃度對去除效率之探討 42
4.1.2不同煙氣濃度對去除效率之探討 44
4.2二氧化錳氧化劑實驗 45
4.2.1不同溫度對去除效率之探討 45
4.2.2不同氧化劑比例對去除效率之探討 47
4.2.3不同煙氣濃度對去除效率之探討 48
4.2.4 不同載流氣體對去除效率之探討 49
第 五 章 結論 50
5.1過硫酸鈉氧化劑 50
5.2二氧化錳氧化劑 50
5.3建議 51
參考文獻 52


1.行政院勞動部,“勞工作業場所容許暴露標準”,2014。
2.行政院環保署,“空氣中氮氧化物自動檢驗方法-化學發光法”,2016。
3.行政院環境保護署,“固定污染源最佳可行控制技術”,2016。
4.行政院環境保護署,“空氣污染防制法施行細則”,2003。
5.行政院環境保護署,“空氣品質標準”,2012。
6.吳榮宗,“氮氧化物防治技術及未來發展趨勢”,工業污染防治期刊,第49 期,pp.47-64,1994。
7.吳榮宗,工業觸媒概論,國興出版社,1989。
8.李永丹,劉大鵬,“加氫脫氮催化研究的新進展”,化學進展,第18卷第4期,pp.417,2006。
9.沈孝宗,“以波洛斯凱特型觸媒催化一氧化氮還原反應之比較研究” ,國立成功大學化工硏究所博士論文,1998 。
10.周志儒,李建利,“應用統計方法於現場高壓蒸氣鍋爐提昇能源效率且降低氮氧化物排放之製程最適化研究”,行政院國家科學委員會專題研究計畫,2004。
11.林俊維,“洗滌法添加Na2SO3對NO2去除率之影響研究”,淡江大學水資源及環境工程學系碩士論文,2000。
12.施英隆,環境化學,五南圖書出版股份有限公司,pp.540,2008
13.胡傑筆,劉峻幗,高明哲,“化學發光法應用於氮氧化物氣體鋼瓶之分析”,量測資訊173期,2017。
14.張木彬,“以氣態氧化法同時去除硫氧化物及氮氧化物之可行性探討”,工業污染防治,第44期,pp.45-57,1992。
15.張君正,張木彬,“氮氧化物生成機制與控制技術之探討”,工業污染防治期刊,第50期,pp.19-35,1994。
16.黃靖傑,“苯酚在鈀/氧化鎂之氫化反應”,東海大學化學系碩士論文,2010。
17.楊宗儒,“NCN自由基與NO2分子反應速率之壓力及溫度效應”, 國立交通大學應用化學系碩博士班碩士論文,2006。
18.經濟部能源局,“107年能源供需概況”,2018。
19.詹德隆,“鍋爐燃料與燃燒”,中華民國鍋爐協會,pp.67-87,1998。
20.劉偉仁、姚中業、黃健豪、鍾淑茹、金風,LED螢光粉技術,五南圖書出版股份有限公司,pp.80-83,2014。
21.劉鎮溢,“電廠排煙脫硝SCR選擇性觸媒還原脫硝技術”,工業污染防治期刊,第76期,pp.98-112,2000。
22.蔡淑儀、陳泰辰、方冠榮,“固態電化學式 NOx感測器於 Euro 6空氣污染防制之研究”,科儀新知,218期,pp.35,2019。
23.賴正昕,劉國棟,黃自立,“選擇性觸媒還原法排煙脫硝系統(SCR De-NOx)控制實務”,工業污染防治,NO.57,pp.110-125,1996。
24.A. Lasalle, C. Roizard, N. Midoux, P. Bourret, P.J. Dyens, “Removal of NOx from flue gases using the urea acidic process: kinetics of the chemical reaction of nitrous acid with urea”, Ind. Eng. Chem. Res.31, pp.777-780, 1992.
25.ATSDR, “ToxFAQs for Nitrogen Oxides”, 2002.
26.Baohuai Zhao, Rui Ran, XiaodongWu, Duan Weng, XueyuanWu, Chunyi Huang, “Comparative study of Mn/TiO2 and Mn/ZrO2 catalysts for NO oxidation”, Catalysis Communications, 56, pp.36-40, 2014.
27.Black, G., Jusinski, L.E., Chem. Phys. Lett., pp.136, 241, 1987.
28.C.J. Liang, C.F. Huang, Y.J. Chen, “Potential for activated persulfate degradation of BTEX Contamination”, Water Res. 42, pp.4091-4100, 2008.
29.C.J. Liang, I.L. Lee, “In situ iron activated persulfate oxidative fluid sparging treatment of TCE contamination-A proof of concept study”, J. Contam. Hydrol. 100, pp.91-100, 2008.
30.C.J. Liang, Y.J. Chen, K.J. Chang, “Evaluation of persulfate oxidative wet scrubber for removing BTEX gases”, J. Hazard. Mater. 164, pp.571-579, 2009.
31.Chong Pyo Cho, Young Dug Pyo, Jin Young Jang, Gang Chul Kim, Young Jin Shin, “NOx reduction and N2O emissions in a diesel engine exhaust using Fe-zeolite and vanadium based SCR catalysts”, Applied Thermal Engineering, 110, pp.18-24, 2017.
32.D. Delimaris, T. Ioannides, “VOC oxidation over MnOx-CeO2 catalysts prepared by a combustion method”, Appl. Catal. B, 84, pp.303, 2008.
33.G. Villena, I. Bejan, R. Kurtenbach, P. Wiesen, J. Kleffmann,“Interferences of commercial NO2 instruments in the urban atmosphere and in a smog chamber”, Atmos. Meas. Tech., 5, pp.149-159, 2012.
34.Gajardo, P. et al., “Comments on the HDS, HDM and HDN Activities of Commercial Catalysts in the Hydrotreating of Heavy Crude Oil”, Appl. Catal., 2, pp.303, 1982.
35.Gongshin Qi, Wei Li, “NO oxidation to NO2 over manganese-cerium mixed oxides”, Catalysis Today, 258, pp.205-213, 2015.
36.H. Huang, R.T. Yang, Langmuir 17, pp.4997-5003, 2001.
37.Hongyuan Xi, Song Zhou, Jinxi Zhou, “New experimental results of NO removal from simulated marine engine exhaust gases by Na2S2O8/urea solutions”, Chemical Engineering Journal, 362, pp.12-20, 2019.
38.Hu Chen, Ying Wang, Yong-Kang Lyu, “High catalytic activity of Mn-based catalyst in NO oxidation at low temperature and over a wide temperature span”, Molecular Catalysis, 454, pp.21-29, 2018.
39.Hua Li, Xiaolong Tang, Honghong Yi, Lili Yu,“Low-temperature catalytic oxidation of NO over Mn-Ce-Ox catalyst”, Journal of Rare Earths, Vol. 28, No. 1, pp.64, 2010.
40.I. Atribak, I. Such-Basáñez, A. Bueno-López, J. Catal. 250, pp.75-84, 2007.
41.Jaime Benitez, “Process Engineering and Design for Air Pollution Control”, PTR Prentice Hall, 1993.
42.K. Ramesh, L. Chen, F. Chen, Y. Liu, Z. Wang, Y. Han, “Re-investigating the CO oxidation mechanism over unsupported MnO, Mn2O3 and MnO2 catalysts”, Catal. Today, 131, pp.477, 2008.
43.K. Tikhomirov, O. Krocher, A. Wokaun,“Influence of Potassium Doping on the Activity and the Sulfur Poisoning Resistance of Soot Oxidation Catalysts”, Catal. Lett. 109, pp.49, 2006.
44.Kai Li, Xiaolong Tang, Honghong Yi, Ping Ning, Dongjuan Kang, Chi Wang, “Low-temperature catalytic oxidation of NO over Mn–Co–Ce–Ox catalyst”, Chemical Engineering Journal, 192, pp.99-104, 2012.
45.L. Guo, L. Guo, D. Zhao, Z. Gao, Y. Tian, T. Ding, J. Zhang, L. Zheng, X. Li, Catal. Today 297, pp.27-35, 2017.
46.Ladislav Bebar, Vit Kermes, Petr Stehlik, Josef Canek, Jarosav Oral, “Low NOx Burners-Prediction of Emissions Concentration Based on Design, Measurements and Modelling”, Waste Management VO.22, pp.443-451, 2002.
47.Lim, K.J., “NOx Combustion Modification”, EPA-600 / 7-79-199, 1979.
48.Lingkun Meng, Jun Wang, Zhihui Sun, Jinxin Zhu, Hang Li, Jianqiang Wang, Meiqing Shen, “Active manganese oxide on MnOx-CeO2 catalysts for low-temperature NO oxidation: Characterization and kinetics study”, Journal of Rare Earths, 36, pp.142-147, 2018.
49.M. Machida, Catal. Surv. Jpn. 5, pp.91-102, 2002.
50.M. Machida, D. Kurogi, T. Kijima, “NOx storage and reduction characteristics of Pd/MnOx–CeO2 at low temperature”, Catal. Today, 84, pp.201, 2003.
51.M. Machida, M. Uto, D. Kurogi, T. Kijima, Chem. Mater. 12, pp.3158-3164, 2000.
52.Maxwell, J.D., Burnett, T,A, “Technical and Economic Evaluations for NOX Control Technology”, Air P01 lution Control Assoc., 73rd Annual Meeting, pp. 80-60, 1980.
53.Mingshan Cui, Yuan Li, Xinquan Wang, Jun Wang, Meiqing Shen, “Effect of preparation method on MnOx-CeO2 catalysts for NO oxidation”, Journal of Rare Earths, Vol. 31, No. 6, pp.572, 2013.
54.N.E. Khan, Y.G. Adewuyi, “Absorption and oxidation of nitric oxide (NO) by aqueous solutions of sodium persulfate in a bubble column reactor”, Ind. Eng. Chem. Res. 49, pp.8749-8760, 2010.
55.Noelia Guillen-Hurtado, Idriss Atribak, Agustin Bueno-Lopez, Avelina Garcia-Garcia, “Influence of the cerium precursor on the physico-chemical features and NO to NO2 oxidation activity of ceria and ceria-zirconia catalysts”, Journal of Molecular Catalysis A: Chemical, 323, pp.52-58, 2010.
56.Nusnin Akter et al., “NO and NH3 Oxidation Over Zeolite Materials ”, Materials Today, Proceedings 3, pp.550-555, 2016.
57.Nusnin Akter, Lixin Han, Daniel Huaman, YonJoo Kang, Taejin Kima, “NO and NH3 Oxidation Over Zeolite Materials”, Materials Today: Proceedings 3, pp.550-555, 2016.
58.Oliver, E.D., “NOx removal”, SRI Report, NO.200, 1989.
59.P. Metkar, V. Balakotaiah, M. Harold, Catal. Today 184 (2012) 115–128.
60.Q. Liang, X. Wu, D. Weng, H. Xu, “Oxygen activation on Cu/Mn-Ce mixed oxides and the role in diesel soot oxidation”, Catal. Today, 139, pp.113, 2008.
61.S.H. Do, Y.J. Kwon, S.H. Kong, “Effect of metal oxides on the reactivity of persulfate/Fe(II) in the remediation of diesel contaminated soil and sand”, J. Hazard. Mater.182, pp.933-936, 2010.
62.S.L. Yang, X.X. Pan, Z.T. Han, D.S. Zhao, B.J. Liu, D.K. Zheng, Z.J. Yan, “Removal of NOx and SO2 from simulated ship emissions using wet scrubbing based on seawater electrolysis technology”, Chem. Eng. J. 331, pp.8-15, 2018.
63.Sada, E., H. Kumazawa, N. Hayakawa, I. Kudo, T. Konodo, “Absorption of NO in Aqueous Solutions of KMnO4”, Chem. Eng. Sci., Vol.32, No.10, pp.1171-1175, 1977.
64.Siddiqi, A.A., Tenini, J.W., “NOx control in review”, Hydroc. Proc., pp.115, 1981.
65.Sigal, I.Y., “The Development and Aims of Investigation to Study the Conditions of Formation of Nitrogen Oxide in Furnace Process”, Thermal Engineering, 30, pp.499, 1983.
66.Suzuki, N. et al., “Radiation Treatment of Waste Gases”, Part ⅥⅡ, J. Nucli, Sci. Technol., 17, 822, 1980.
67.Takeuchi, H., Ando, M., Kizawa, N., ” Absorption of Nitrogen Oxides in Aqueous Sodium Sulfite and Bisulfite Solutions”, Industrial & Engineering Chemistry, Process Design and Development, Vol. 16, No. 3, Jul, pp.303-308, 1977.
68.Tommaso Selleri, Federica Gramigni, Isabella Nova, Enrico Tronconi, “NO oxidation on Fe- and Cu-zeolites mixed with BaO/Al2O3: Free oxidation regime and relevance for the NH3-SCR chemistry at low temperature”, Applied Catalysis B: Environmental, 225, pp.324-331, 2018.
69.Wenhuan Wang, Ruitang Guo, Weiguo Pan, Guoxin Hu, “Low temperature catalytic oxidation of NO over different-shaped CeO2”, Journal of Rare Earths, 36, pp.588-593, 2018.
70.X. Tang, J. Chen, X. Huang, Y. Xu, W. Shen, “Pt/MnOx-CeO2 catalysts for the complete oxidation of formaldehyde at ambient temperature”, Appl. Catal. B, 81, pp.115, 2008.
71.X. Wu, F. Lin, H. Xu, D. Weng, “Effects of adsorbed and gaseous NOx species on catalytic oxidation of diesel soot with MnOx-CeO2 mixed oxides”, Appl. Catal. B, 96, pp.101, 2010.
72.Yaying Ji, Dongyan Xu, Mark Crocker, Joseph R. Theis, Christine Lambert, Agustin Bueno-Lopez, Deb Harris, Dave Scapens, “Mn-based mixed oxides for low temperature NOx adsorber applications”, Applied Catalysis A, General, 567, pp.90-101, 2018.
73.Yongjin Jung, Young Jin Shin, Young Dug Pyo, Chong Pyo Cho, Jinyoung Jang, Gangchul Kim , “NOx and N2O emissions over a Urea-SCR system containing both V2O5-WO3/TiO2 and Cu-zeolite catalysts in a diesel engine”, Chemical Engineering Journal, No.326, pp.853–862, 2017.
74.Yu HS, Zhu QY, Tan ZC., “Absorption of nitric oxide from simulated flue gas using different absorbents at room temperature and atmospheric pressure”, Appl. Energy, pp.93:53, 2012.
75.Zhang LL, Wang JX, Sun Q, Zeng XF, Chen JF, “Removal of nitric oxide in rotating packed bed by ferrous chelate solution”, Chem Eng J, pp.181-182:624, 2012.
76.Zhongyi An, Yuqun Zhuo, Chao Xu, Changhe Chen, “Influence of the TiO2 crystalline phase of MnOx/TiO2 catalysts for NO oxidation”, Chinese Journal of Catalysis, 35, pp.120-126, 2014.

電子全文 電子全文(網際網路公開日期:20250817)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔