|
[1]Mengdi Zhang, Lijun Zhang, Jiantao Fan, Gong Li, Peter K. Liaw, Riping Liu. Microstructure and enhanced mechanical behavior of the Al7Co24Cr21Fe24Ni24 high-entropy alloy system by tuning the Cr content, Mater. Sci. Eng. A, 733 (2018), pp. 299-306. [2]Peng Cui, Yimo Ma, Lijun Zhang, Mengdi Zhang, Jiantao Fan, Wanqing Dong, Pengfei Yu, Gong Li, Riping Liu. Effect of Ti on microstructure and mechanical properties of high entropy alloys based on CoFeMnNi system, Mater. Sci. Eng. A, 737 (2018), pp. 198-204. [3]Shao-Ping Wang, Jian Xu. TiZrNbTaMo high-entropy alloy designed for orthopedic implants As-cast microstructure and mechanical properties, Mater Sci. Eng. C, 73 (2017), pp. 80-89. [4]Mitsuharu Todai, Takeshi Nagase, Takao Hori, Aira Matsugaki, Aiko Sekita, Takayoshi Nakano. Novel TiNbTaZrMo high-entropy alloys for metallic biomaterials, Scr. Mater., 129 (2017), pp. 65-68. [5]Takeshi Nagase, Mitsuharu Todai, Takao Hori, Takayoshi Nakano. Microstructure of equiatomic and non-equiatomic Ti-Nb-Ta-Zr-Mo high-entropy alloys for metallic biomaterials, J. Alloys Compd., 753 (2018), pp. 412-421. [6]Takao Hori, Takeshi Nagase, Mitsuharu Todai, Aira Matsugaki, Takayoshi Nakano. Development of non-equiatomic Ti-Nb-Ta-Zr-Mo high-entropy alloys for metallic biomaterials, Scr. Mater., 172 (2019), pp. 83-87. [7]Takeshi Nagase, Yuuka Iijima, Aira Matsugaki, Kei Ameyama, Takayoshi Nakano. Design and fabrication of Ti-Zr-Hf-Cr-Mo and Ti-Zr-Hf-Co-Cr-Mo high-entropy alloys as metallic biomaterials, Mater. Sci. Eng. C, 107 (2020), 110322. [8]Ryan newell, Zi Wang, Isabel Arias, Abhishek Mehta, Yongho Sohn, Stephen Florczyk. Direct-Contact Cytotoxicity Evaluation of CoCrFeNi-Based Multi-Principal Element Alloys, J. Funct. Biomater., 9 (4) (2018), pp. 59. [9]Yuan Yuan, Yuan Wu, Zhi Yang, Xue Liang, Zhifeng Lei, Hailong Huang, Hui Wang, Xiaogjun Liu, Ke An, Wei Wu, Zhaoping Lu. Formation, structure and properties of biocompatible TiZrHfNbTa high-entropy alloys, Mater. Res. Lett., 7 (2018), pp. 225-231. [10]A. Motallebzadeh, M. B. Yagci, E. Bedir, C. B. Aksoy, D. Canadinc. Mechanical Properties of TiTaHfNbZr High-Entropy Alloy Coatings Deposited on NiTi Shape Memory Alloy Substrates. Mater. Trans. A, 49 (2018), pp. 1992-1997. [11]C. B. Aksoy, D. Canadinc, M. B. Yagci. Assessment of Ni ion release from TiTaHfNbZr high entropy alloy coated NiTi shape memory substrates in artificial saliva and gastric fluid. Mater. Chem. Phys., 236 (2019) 121802. [12]Amir Motallebzadeh, Naeimeh Sadat Peighambardoust, Saad Sheikh, Hideyuki Murakami, Sheng Guo, Demircan Canadinc. Microstructural, mechanical and electrochemical characterization of TiZrTaHfNb and Ti1.5ZrTa0.5Hf0.5Nb0.5 refractory high-entropy alloys for biomedical applications. Intermetallics, 113 (2019) 106572. [13]S. H. Chang, S. K. Wu, B. S. Liao, C. H. Su. Selectively leaching and surface properties of CoNiCr-based medium-/high-entropy alloys. Appl. Surf. Sci., 515 (2020) 146044. [14]Nitesh R. Patel, Piyush P. Gohil. A Review on Biomaterials: Scope, Applications & Human Anatomy Significance, Int. J. Emerg. Technol. Adv. Eng., 2 (4) (2012), pp. 91-101. [15]Mahmoud Z. Ibrahim, Ahmed A.D. Sarhan, Farazila Yusuf, M. Hamdi. Biomedical materials and techniques to improve the tribological, mechanical and biomedical properties of orthopedic implants-A review article. J. Alloys Compd., 714 (2017), pp. 636-667. [16]I Gurappa. Characterization of different materials for corrosion resistance under simulated body fluid conditions. Mater Charact, 49 (1) (2002), pp. 73-79. [17]D.D. Xiang, P. Wang, X.P. Tan, S. Chandra, C. Wang, M.L.S. Nai, S.B. Tor, W.Q. Liu, E. Liu. Anisotropic microstructure and mechanical properties of additively manufactured Co-Cr-Mo alloy using selective electron beam melting for orthopedic implants. Mater. Sci. Eng. A, 765 (2019), 138270. [18]M. Geetha, A.K. Singh, R. Asokamani, A.K. Gogia. Ti based biomaterials, the ultimate choice for orthopaedic implants – A review. Prog. Mater. Sci., 54 (2009), pp. 397-425. [19]W.J. Buehler, J.V. Gilfrich, R.C. Wiley. Effect of Low-Temperature Phase Changes on the Mechanical Properties of Alloys near Composition TiNi. J. Appl. Phys., 34 (1963), pp. 1475. [20]D.Y. Li. Exploration of TiNi shape memory alloy for potential application in a new area: tribological engineering. Smart Mater Struct, 9 (5) (2000). [21]Wei-huai GONG, Yu-hua CHEN, Li-ming KE. Microstructure and properties of laser micro welded joint of TiNi shape memory alloy. Transactions of Nonferrous Metals Society of China, 21 (9) (2011), pp. 2044-2048. [22]B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A, 375-377 (2004), pp. 213-218. [23]T.K. Chen, T.T. Shun, J.W. Yeh, M.S. Wong. Nanostructred nitride films of multi-element high-entropy alloys by reactive DC sputtering. Surf. Coat. Technol., 188-189 (2004), pp. 193-200. [24]J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang. Nanostructred high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater., 6 (5) (2004), pp. 299-303. [25]Jien-Wei Yeh, Su-Jien Lin, Tsung-Shune Chin, Jon-Yiew Gan, Swe-Kai Chen, Tao-Tsung Shun, Chung-Huei Tsau, Shou-Yi Chou. Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements. Metall. Mater. Trans. A, 35 (8) (2004), pp. 2533-2536. [26]P.K. Huang, J.W. Yeh, T.T. Shun, S.K. Chen. Multi-principal-element alloys with improved oxidation and wear resistance for thermal spray coating. Adv. Eng. Mater., 6 (2004), pp. 74-78. [27]Chin-You Hsu, Jien-Wei Yeh, Swe-Kai Chen, Tao-Tsung Shun. Wear resistance and high-temperature compression strength of Fcc CuCoNiCrAl0.5Fe alloy with boron addition. Metall. Mater. Trans. A, 35 (2004), pp. 1465-1469. [28]Ming-Hung Tsai, Jien-Wei Yeh. High-Entropy Alloys: A Critical Review. Mater. Res. Lett., 2 (3) (2014), pp. 107-123. [29]O.N. Senkov, J.M. Scott, S.V. Senkova, D.B. Miracle, C.F. Woodward. Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy. J. Alloys Compd., 509 (20) (2011), pp. 6043-6048. [30]Guo Sheng Huang, Xiang Bo Li, Lu Kuo Xing. Corrosion behavior of low pressure cold sprayed Zn-Ni composite coatings. Anti-Corrosion Methods and Materials, 63 (6) (2016), pp.461-469. [31]Mohammed A. Amin, Nader El-Bagoury, Murat Saracoglu, Mohamed Ramadan. Electrochemical and Corrosion Behavior of cast Re-containing Inconel 718 Alloys in Sulphuric Acid Solutions and the Effect of Cl. Int. J. Electrochem. Sci., 9 (2014), pp. 5352-5374. [32]William Stephen Tait. An Introduction to Electrochemical Corrosion Testing for Practicing Engineers and Scientists. (1994). [33]Denny A. Jones. Principles and Prevention of Corrosion. (1996). [34]N.K. Das, J. Chakrabartty, S.F.U. Farhad, A.K. Sen Gupta, E.M.K. Ikball Ahamed, K.S. Rahman, A. Wafi, A.A. Alkahtani, M.A. Martin, N. Amin. Effect of substrate temperature on the properties of RF sputtered CdS thin films for solar cell applications, Results Phys, 17 (2020), 103132. [35]Jiří Zýka, Jaroslav Málek, Jaroslav Veselý, František Lukáč, Jakub Čížek, Jan Kuriplach and Oksana Melikhova. Microstructure and Room Temperature Mechanical Properties of Different 3 and 4 Element Medium Entropy Alloys from HfNbTaTiZr System, Entropy, 21(2) (2019), 114. [36]S.Y. Chen, Y. Tong, K.K. Tseng, J.W. Yeh, J.D. Poplawsky, J.G. Wen, M.C. Gao, G. Kim, W. Chen, Y. Ren, R. Feng, W.D. Li, P.K. Liaw. Phase transformation of HfNbTaTiZr high-entropy alloy at intermediate temperature. Scr. Mater, 158 (2019), pp. 50-56. [37]J. Rituerto Sin, A. Neville, N. Emami. Corrosion and tribocorrosion of hafnium in simulated body fluids. J. Biomed Mater Res Part B Appl. Biomater., 102 (6) (2014), pp. 1157-1164.
|