(3.235.11.178) 您好!臺灣時間:2021/03/05 15:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:許皓昕
研究生(外文):HSU, HAO-HSIN
論文名稱:開發漆酶時間溫度指示器監控截切小黃瓜於冷鏈中的品質
論文名稱(外文):Development of Laccase Time-Temperature Indicators (TTIs) for Monitoring Quality of Fresh-Cut Cucumber in the Cold Chain
指導教授:陳輝煌陳輝煌引用關係陳莉臻陳莉臻引用關係
指導教授(外文):CHEN, HUI-HUANGCHEN, LI-CHEN
口試委員:陳政雄羅翊禎陳時欣
口試委員(外文):CHEN, SHAUNLO, YI-CHENCHEN, SHIH-HSIN
口試日期:2020-07-29
學位類別:碩士
校院名稱:國立宜蘭大學
系所名稱:食品科學系碩士班
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:94
中文關鍵詞:時間溫度指示器漆酶疊氮化鈉截切小黃瓜保存期限活化能
外文關鍵詞:Time-temperature indicatorlaccasesodium azidefresh-cut cucumbershelf lifeactivation energy
DOI:10.6820/niu202000152
相關次數:
  • 被引用被引用:1
  • 點閱點閱:41
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
截切小黃瓜(Cucumis sativus)在加工、貯藏、配送和架售的冷鏈(Cold chain)過程中,可能因偏離適當的溫度而影響實際保存期限(True shelf life)。本研究嘗試利用時間溫度指示器(Time-temperature indicator, TTI)提供累計的時間溫度資訊,經由即時的視覺變化響應冷鏈中截切小黃瓜的品質。將幾丁聚醣(Chitosan, CS)製成之靜電紡絲薄膜,以共價鍵交聯固定化漆酶(Laccase)開發TTI原型,利用氧化癒創木酚(Guaiacol),使其呈色反應由無色、琥珀色,最後變為黑褐色。且當吸光值(OD500)達3.2時為目視判別極限,可做為漆酶TTI原型呈色反應終點(Coloration endpoint)。在漆酶TTI原型中添加非競爭型抑制劑疊氮化鈉(Sodium azide, NaN3),可擴大呈色反應終點時間,於5°C下為11.0 ± 0.8~199.5 ± 2.1小時;擴大Arrhenius活化能(Activation energy, Ea)範圍為29.92 ± 2.20~66.39 ± 1.74 kJ/mol。截切小黃瓜的品質劣變項目(失重、硬度、CIE-Lab、pH值、總生菌數)都呈零級(Zero-order)反應,其中以pH值最具代表性。當pH = 5.5時可由肉眼明顯的看出顏色變化,並伴隨異味產生,且與品評達不可接受程度的品質劣變臨界時間接近,為合適的品質指標,其Ea為53.85 ± 1.86 kJ/mol。利用S型(Sigmoid)模型評估添加NaN3的漆酶TTI原型呈色反應動力學,發現Ea (29.92 ± 2.20~66.39 ± 1.74 kJ/mol)皆適用於監測截切小黃瓜之劣變。於5、15、25及35°C恆溫響應試驗(Response test)中,漆酶固定量25 μg/cm2 及添加0.075 mM NaN3的TTI原型的反應終點分別為116.6 ± 0.4、31.2 ± 1.2、14.5 ± 0.7及10.1 ± 0.1小時,截切小黃瓜在該溫度下劣變臨界時間分別為119.5 ± 1.8、32.8 ± 0.3、16.1 ± 0.7及10.6 ± 0.4小時,預測誤差(Prediction error)分別為2.4 ± 0.3、1.3 ± 1.0、9.9 ± 4.3及4.7 ± 0.9%,該TTI評估截切小黃瓜劣變之平均預測誤差僅4.6±1.7%。且漆酶TTI原型與截切小黃瓜同時儲存於5及25°C變動溫度的動態響應試驗中,預測誤差為8.2 ± 0.9%。靜態及動態溫度響應均顯示,在截切小黃瓜達品質劣變臨界時間,漆酶TTI原型也同時或略早達呈色反應終點。因此,利用此條件製備之漆酶TTI原型,可有效監測冷鏈中截切小黃瓜之品質劣變,並準確預估實際保存期限。
The true shelf life of fresh-cut cucumber (Cucumis sativus) might be shortened when ambient temperature deviates from the appropriate temperature during the cold chain, including production, storage, distribution and sales. In this study, the time-temperature indicator (TTI) was utilized to provide the time-temperature cumulatively history and to respond the quality of the cut cucumber in the cold chain by visual changing in real time. The laccase was immobilized by cross-linking on the chitosan (CS) electrospun fiber to develop TTI prototype. The color of laccase TTI prototype changed from transparency to amber and finally turned into deep black brown by the oxidation of guaiacol. When the absorbance value (OD500) of laccase TTI prototype reached 3.2, which color was visually indistinguishable, it could be regarded as a coloration endpoint. The coloration endpoint under 5°C and Arrhenius activation energy (Ea) of laccase TTI prototypes were expanded to 11.0 ± 0.8~199.5 ± 2.1 hours and 29.92 ± 2.20~66.39 ± 1.74 kJ/mol, respectively, by addition of sodium azide (NaN3, a non-competitive inhibitor). In addition, the deterioration in quality items, include weight loss, hardness, CIE-Lab, pH value and total plate count, of fresh-cut cucumbers were regarded as zero-order reactions. The pH value was the most representative quality index for monitoring the deterioration of fresh-cut cucumbers since the apparent color change was observed and rare delicacy was smelled when the pH decreased to 5.5, and the point of occurrence is close to the time of critical deterioration by sensory evaluation. The Ea of such pH change was 53.85 ± 1.86 kJ/mol. The sigmoid model can be utilized to evaluate the kinetics of laccase TTI prototype with NaN3. The Ea of each TTI (29.92 ± 2.20~66.39 ± 1.74 kJ/mol) is suitable for monitoring the deterioration of fresh-cut cucumber. During the isothermal response tests under 5, 15, 25, and 35°C, the coloration endpoint of TTI prototype immobilized 25 μg/cm2 laccase and 0.075 mM NaN3 were 116.6 ± 0.4, 31.2 ± 1.2, 14.5 ± 0.7 and 10.1 ± 0.1 hours, respectively; the point of critical deterioration of fresh-cut cucumber those were 119.5 ± 1.8, 32.8 ± 0.3, 16.1 ± 0.7 and 10.6 ± 0.4 hours, respectively; the prediction error were 2.4 ± 0.3, 1.3 ± 1.0, 9.9 ± 4.3 and 4.7 ± 0.9%, respectively. The average prediction error for such laccase TTI prototype to evaluate deterioration of fresh-cut cucumber was only 4.6 ± 1.7%. In dynamic temperature response tests with intermittent temperature changes between 5 and 25°C, the prediction error was 8.2 ± 0.9%. According to isothermal and dynamic temperature response tests, laccase TTI prototypes reached the endpoint of the coloration at the same time or slightly earlier than the critical deterioration time of fresh-cut cucumber. Therefore, laccase TTI prototype prepared under this conditions can effectively monitor the quality deterioration of fresh-cut cucumber during the cold chain and accurately predict the true shelf life.
中文摘要:I
Abstract:II
誌謝:IV
目錄:V
表目錄:VIII
圖目錄:IX
附表目錄:XI
附圖目錄:XII
縮寫及符號對照表:XIII
壹、前言:1
貳、文獻回顧:3
2.1 冷鏈食品:3
2.1.1 定義與介紹:3
2.1.2 溫度變動對冷鏈食品的影響:3
2.2 時間溫度指示器:5
2.2.1 種類及市售產品:6
2.2.2 應用於食品的機制:7
2.2.3 酵素型TTI在品質監控的優勢與劣勢:7
2.3 漆酶:9
2.3.1 活性變化:10
2.4 酵素固定化(Enzyme immobilization):10
2.4.1 方法:11
2.4.2 載體的選擇:11
2.5 靜電紡絲:12
2.5.1 操作變因:12
2.5.2 幾丁聚醣靜電紡絲:13
2.5.3 CS/PVA/TEOS靜電紡絲:14
2.6 截切蔬菜:14
2.6.1 截切後的風險及品質變化:15
2.6.2 截切小黃瓜的品質指標:16
參、材料與方法:18
3.1 實驗架構:18
3.2 漆酶TTI薄膜的製備:19
3.2.1 電紡溶液的配製:19
3.2.2 電紡薄膜:19
3.2.3 薄膜活化:19
3.2.4 漆酶固定化於活化後的薄膜:20
3.3 漆酶TTI基質溶液的製備:20
3.4 漆酶TTI原型的呈色反應:20
3.4.1 呈色分析:20
3.4.2 動力學分析:21
3.5 截切小黃瓜的製備:22
3.6 截切小黃瓜的儲藏試驗:22
3.7 截切小黃瓜物理變化之測定:22
3.7.1 失重(Weight loss):22
3.7.2 硬度(Hardness):22
3.7.3 顏色變化(CIE-Lab):23
3.8 截切小黃瓜化學變化之測定:23
3.8.1 pH值:23
3.9 截切小黃瓜微生物變化之測定:23
3.9.1 總生菌數(Total plate count, TPC):23
3.10 截切小黃瓜劣變之動力學分析:24
3.11 截切小黃瓜的感官品評:24
3.12 漆酶TTI與截切小黃瓜的響應試驗:25
3.12.1 靜態恆溫響應試驗:25
3.12.2 動態溫度響應試驗:25
3.13 統計分析:25
肆、結果與討論:26
4.1 漆酶TTI原型的呈色分析:26
4.1.1 顏色及顏色系統的變化:26
4.1.2 標準化吸光值的變化及呈色觀察:27
4.2 漆酶TTI 原型的動力學分析:28
4.2.1 活化能(EaTTI):28
4.2.2 呈色反應終點:29
4.3 截切小黃瓜之品質劣變:29
4.3.1 物理指標之變化:29
4.3.2 化學指標之變化:31
4.3.3 微生物指標之變化:32
4.4 截切小黃瓜劣變的動力學分析:32
4.5 截切小黃瓜品質指標之驗證:33
4.6 漆酶TTI與截切小黃瓜的響應試驗:34
4.6.1 靜態恆溫響應試驗:34
4.6.2 動態溫度響應試驗:35
伍、結論:36
陸、參考文獻:37
柒、表:50
捌、圖:59
玖、附表:78
拾、附圖:79

支耀松。2019。以靜電紡絲法製作碳化矽纖維奠基技術研究。國防大學化學及材料工程學系碩士論文,桃園市,臺灣。
江詠薇。2012。臺灣冷藏宅配溫物監測實證與其對食品安全影響之探討。國立海洋大學食品科學系碩士論文,基隆市,臺灣。
吳佳穎。2017。非更年性水果低溫協力廠商物流中心之核心能力。國立海洋大學航運管理學系碩士論文,基隆市,臺灣。
吳宜儒。2018。席夫試劑型氧化程度感測器研發。輔仁大學食品科學系碩士論文,新北市,臺灣。
李文豪。 2008。巨峰葡萄果實採後低溫貯藏之品質變化及延長貯藏之探討。中興大學園藝學系學位論文,臺中市,臺灣。
李季竺。2019。宅配業與連鎖餐飲業冷鏈物流配送溫度管理實證研究。國立海洋大學食品科學系碩士論文,基隆市,臺灣。
李維豫。2000。酵素型時間-溫度指示標籤監控機能性成分品質壽命-葉黃素模式系統。輔仁大學食品科學系碩士論文,新北市,臺灣。
李靜、季悅、李美琳、王雷、金鵬、鄭永華。2018。切割方式對鮮切萵苣品質及抗氧化活性的影響。食品科學,39(3):268-273。
周緯。2000。資通訊技術應用於冷藏食品全流程冷鏈食品安全管理之探討。國立海洋大學食品科學系碩士論文,基隆市,臺灣。
林俊芳、劉志明、陳曉陽、郭麗瓊、王傑。2009。真菌漆酶的酶活測定方法評價。生物加工過程,7(4):1-8。
苑函。2011。食品質量管理;中國輕工業出版社:北京市,中國。
徐鳳娟、葛蕾、李振興、林洪、毛相朝。2017。固態酶型時間溫度指示器的研發。食品安全品質檢測學報,9:3507-3512。
郜鳳梧。1994。黃瓜四季栽培;科學技術文獻出版社:北京市,中國。
康琇雯。2014。臺灣食品業之低溫物流操作實務及其對食品安全與物流績效之影響。國立海洋大學食品科學系碩士論文,基隆市,臺灣。
張為憲、李敏雄、呂政義、張永和、陳昭雄、孫璐西、陳怡宏、張基鬱、顏國欽、林志城、林慶文。2004。食品化學;華香園出版社:臺北市,臺灣。
張銘振。2013。低溫物流倉儲與配送階段溫度波動影響因數之研究。國立海洋大學運輸科學系碩士論文,基隆市,臺灣。
莊昭容。2017。以電紡技術固定化漆酶開發監控食品貯存品質之時間溫度指示器。宜蘭大學食品科學系碩士論文,宜蘭縣,臺灣。
許銘軒。2014。靜電紡絲奈米纖維技術探討及其應用。國立臺北科技大學化學工程學系碩士論文,臺北市,臺灣。
陳永輝。2019。製備與鑑定靜電紡絲聚胺酯奈米複合材料。國立臺北科技大學分子科學與工程學系有機高分子碩士論文,臺北市,臺灣。
陳安琪。2014。智慧型包裝之複合金屬離子形式乙烯指示標籤製備。輔仁大學食品科學系碩士論文,新北市,臺灣。
陳國誠。1992。酵素工程學;藝軒出版社:新北市,臺灣。
陳輝煌。2020。串聯活性包裝及智能包裝技術優化冷鏈中農產品品質及監控能力。科技部計畫(MOST 108-2321-B-197-002)期中報告。
黃竣群。2010。利用靜電紡絲系統製備聚氨基甲酸酯奈米彈性纖維。國立臺北科技大學分子科學與工程學系有機高分子博士論文,臺北市,臺灣。
楊文儀。2015。巨大孔徑幾丁聚醣膜之製備及其固定化酵素之研究。國立中央大學環境工程學系博士論文,桃園市,臺灣。
楊曉哲、胡文忠、薑愛麗。2018。鮮切萵苣生理生化變化及其保鮮技術的研究進展。食品與發酵工業,44(2):271-278。
葛宏華、武贇、肖亞中。2011。漆酶空間結構、反應機理及應用。生物工程學報,27(2):156-163。
游莉菁。2013。利用連續溫度資訊於食品架售期預測與倉儲管控-以18°C即食食品為例。國立海洋大學食品科學系碩士論文,基隆市,臺灣。
劉伯康、莊朝琪。2016。食品感官品評-理論與實務;新文京開發出版股份有限公司:新北市,臺灣。
潘瑞熾。2013。植物生理學;藝軒出版社:新北市,臺灣。
蔡婷聿。2019。以電紡固定化漆酶開發時間溫度指示器監測冷藏乳品品質。宜蘭大學食品科學系碩士論文,宜蘭縣,臺灣。
蔡華偉、任發政。2006。時間-溫度指示卡的研究與應用。肉類研究,20(2):49-52。
蔡憲旻。2008。利用真空預冷與冰箱之蔬果降溫率探討。國立勤益科技大學冷凍空調與能源科技學系碩士論文,臺中市,臺灣。
衛生福利部食品藥物管理署。2004。低溫食品物流業者衛生安全宣導手冊,台北市,臺灣。
衛生福利部食品藥物管理署。2013a。市售包裝食品有效日期評估指引,台北市,臺灣。
衛生福利部食品藥物管理署。2013b。食品微生物之檢驗方法-生菌數之檢驗,台北市,臺灣。
衛生福利部食品藥物管理署。2017。截切生鮮蔬果衛生操作參考手冊,台北市,臺灣。
衛生福利部食品藥物管理署。2018。《食品良好衛生規範準則》衛授食字第1071300340號,台北市,臺灣。
魏千媚。2013。嗜高溫放線菌Thermobifida fusca所分泌漆酶之生產、純化與性質探討。靜宜大學化妝品科學系碩士論文,臺中市,臺灣。
Adams, J. B.; Langley, F. M. 1998. Nitrophenyl glucoside hydrolysis as a potential time-temperature integrator reaction. Food Chemistry 62(1): 65-68.
Alexandria, V. 1999. Handling Guidelines for the Fresh-cut Produce Industry; International Fresh-cut Produce Association (IFPA) and the Produce Marketing Association (PMA): VA, USA. 5-7.
Barry‐Ryan, C.; O'Beirne, D. 1999. Ascorbic acid retention in shredded iceberg lettuce as affected by minimal processing. Journal of Food Science 64(3): 498-500.
Baur, S.; Klaiber, R.; Hammes, W. P.; Carle, R. 2004. Sensory and microbiological quality of shredded, packaged iceberg lettuce as affected by pre-washing procedures with chlorinated and ozonated water. Innovative Food Science and Emerging Technologies 5(1): 45-55.
Baur, S.; Klaiber, R.; Wei, H.; Hammes, W. P.; Carle, R. 2005. Effect of temperature and chlorination of pre-washing water on shelf-life and physiological properties of ready-to-use iceberg lettuce. Innovative Food Science and Emerging Technologies 6(2): 171-182.
Benson, K. R.; Gorecki, J.; Nikiforov, A.; Tsui, W.; Kasi, R. M.; Kumar, C. V. 2019. Cytochrome c–poly (acrylic acid) conjugates with improved peroxidase turnover number. Organic and Biomolecular Chemistry 17(16): 4043-4048.
Bilal, M.; Rasheed, T.; Zhao, Y.; Iqbal, H. M.; Cui, J. 2018. “Smart” chemistry and its application in peroxidase immobilization using different support materials. International Journal of Biological Macromolecules 119(11): 278-290.
Bobelyn, E.; Hertog, M. L.; Nicolaï, B. M. 2006. Applicability of an enzymatic time temperature integrator as a quality indicator for mushrooms in the distribution chain. Postharvest Biology and Technology 42(1): 104-114.
Bogataj, M.; Bogataj, L.; Vodopivec, R. 2005. Stability of perishable goods in cold logistic chains. International Journal of Production Economics 93(8): 345-356.
Brizio, A. P. D. R.; Prentice, C. 2015a. Development of a new time temperature indicator for enzymatic validation of pasteurization of meat products. Journal of Food Science 80(6): M1271-M1276.
Brizio, A. P. D. R.; Prentice, C. 2015b. Development of an intelligent enzyme indicator for dynamic monitoring of the shelf-life of food products. Innovative Food Science and Emerging Technologies 30(8): 208-217.
Burke, M. A. 2019. Maini's many contributions to mathematical enzyme kinetics: a review. Journal of Theoretical Biology 481(11): 24-27.
Cazón, P.; Vázquez, M.; Velazquez, G. 2018a. Composite films of regenerate cellulose with chitosan and polyvinyl alcohol: evaluation of water adsorption, mechanical and optical properties. International Journal of Biological Macromolecules 117(10): 235-246.
Cazón, P.; Vázquez, M.; Velazquez, G. 2018b. Novel composite films based on cellulose reinforced with chitosan and polyvinyl alcohol: effect on mechanical properties and water vapour permeability. Polymer Testing 69(6): 536-544.
Chen, X.; Ren, L.; Li, M.; Qian, J.; Fan, J.; Du, B. 2017. Effects of clove essential oil and eugenol on quality and browning control of fresh-cut lettuce. Food Chemistry 214(1): 432-439.
de Farias, B. S.; Junior, T. R. S. A. C.; de Almeida Pinto, L. A. 2019. Chitosan-functionalized nanofibers: a comprehensive review on challenges and prospects for food applications. International Journal of Biological Macromolecules 123(2): 210-220.
Dermesonluoglu, E.; Fileri, K.; Orfanoudaki, A.; Tsevdou, M.; Tsironi, T.; Taoukis, P. 2016. Modelling the microbial spoilage and quality decay of pre-packed dandelion leaves as a function of temperature. Journal of Food Engineering 184(9): 21-30.
Doerge, D. R.; Divi, R. L.; Churchwell, M. I. 1997. Identification of the colored guaiacol oxidation product produced by peroxidases. Analytical Biochemistry 250(1): 10-17.
Duan, B.; Dong, C.; Yuan, X.; Yao, K. 2004. Electrospinning of chitosan solutions in acetic acid with poly (ethylene oxide). Journal of Biomaterials Science, Polymer Edition 15(6): 797-811.
Dwivedi, U. N.; Singh, P.; Pandey, V. P.; Kumar, A. 2011. Structure-function relationship among bacterial, fungal and plant laccases. Journal of Molecular Catalysis B: Enzymatic 68(2): 117-128.
Ellouze, M.; Augustin, J. C. 2010. Applicability of biological time temperature integrators as quality and safety indicators for meat products. International Journal of Food Microbiology 138(1-2): 119-129.
Fan, K.; Zhang, M.; Jiang, F. 2019. Ultrasound treatment to modified atmospheric packaged fresh-cut cucumber: influence on microbial inhibition and storage quality. Ultrasonics Sonochemistry 54(6): 162-170.
Feng, L.; Zhang, M.; Bhandari, B.; Guo, Z. 2018. Determination of postharvest quality of cucumbers using nuclear magnetic resonance and electronic nose combined with chemometric methods. Food and Bioprocess Technology 11(12): 2142-2152.
Fernández-Fernández, M.; Sanromán, M. Á.; Moldes, D. 2013. Recent developments and applications of immobilized laccase. Biotechnology Advances 31(8): 1808-1825.
Galagan, Y.; Su, W. F. 2008. Fadable ink for time-temperature control of food freshness: novel new time-temperature indicator. Food Research International 41(6): 653-657.
Gao, T.; Tian, Y.; Zhu, Z.; Sun, D. W. 2020. Modelling, responses and applications of time-temperature indicators (TTIs) in monitoring fresh food quality. Trends in Food Science and Technology 99(5): 311-322.
Garcia, A.; Mount, J. R.; Davidson, P. M. 2003. Ozone and chlorine treatment of minimally processed lettuce. Journal of Food Science 68(9): 2747-2751.
Geng, X.; Kwon, O. H.; Jang, J. 2005. Electrospinning of chitosan dissolved in concentrated acetic acid solution. Biomaterials 26(27): 5427-5432.
Ghaani, M.; Cozzolino, C. A.; Castelli, G.; Farris, S. 2016. An overview of the intelligent packaging technologies in the food sector. Trends in Food Science and Technology 51(5): 1-11.
Ghorani, B.; Tucker, N. 2015. Fundamentals of electrospinning as a novel delivery vehicle for bioactive compounds in food nanotechnology. Food Hydrocolloids 51(10): 227-240.
Giannakourou, M. C.; Taoukis, P. S. 2003. Application of a TTI‐based distribution management system for quality optimization of frozen vegetables at the consumer end. Journal of Food Science 68(1): 201-209.
Giannakourou, M. G.; Taoukis, P. S. 2002. Systematic application of time temperature integrators as tools for control of frozen vegetable quality. Journal of Food Science 67(6): 2221-2228.
Giannakourou, M.; Strati, I. F.; Kriebardis, A. G.; Mantanika, V.; Poulis, S.; Zoumpoulakis, P.; Sinanoglou, V. J. 2019. Shelf life extension and quality improvement of cucumber slices impregnated in infusions of edible herbs. Analytical Letters 52(17): 2677-2691.
Guo, L.; Ma, Y.; Sun, D. W.; Wang, P. 2008. Effects of controlled freezing-point storage at 0°C on quality of green bean as compared with cold and room-temperature storages. Journal of Food Engineering 86(1): 25-29.
Guo, S.; Huang, R.; Chen, H. 2017. Application of water-assisted ultraviolet light in combination of chlorine and hydrogen peroxide to inactivate Salmonella on fresh produce. International Journal of Food Microbiology 257(2): 101-109.
Habiba, U.; Siddique, T. A.; Talebian, S.; Lee, J. J. L.; Salleh, A.; Ang, B. C.; Afifi, A. M. 2017. Effect of deacetylation on property of electrospun chitosan/PVA nanofibrous membrane and removal of methyl orange, Fe (III) and Cr (VI) ions. Carbohydrate Polymers 177(12): 32-39.
Hadawey, A.; Tassou, S. A.; Chaer, I.; Sundararajan, R. 2017. Unwrapped food product display shelf life assessment. Energy Procedia 123(9): 62-69.
Han, J. H. 2005. New technologies in food packaging: Innovations in Food Packaging; Academic Press: Manitoba, Canada. 3-11.
Hosseini, S. F.; Nahvi, Z.; Zandi, M. 2019. Antioxidant peptide-loaded electrospun chitosan/poly (vinyl alcohol) nanofibrous mat intended for food biopackaging purposes. Food Hydrocolloids 89(4): 637-648.
Huang, W. C.; Wang, W.; Xue, C.; Mao, X. 2018. Effective enzyme immobilization onto a magnetic chitin nanofiber composite. ACS Sustainable Chemistry and Engineering 6(7): 8118-8124.
Huang, X. J.; Ge, D.; Xu, Z. K. 2007. Preparation and characterization of stable chitosan nanofibrous membrane for lipase immobilization. European Polymer Journal 43(9): 3710-3718.
Hwang, S.; Lee, C. H.; Ahn, I. S. 2008. Product identification of guaiacol oxidation catalyzed by manganese peroxidase. Journal of Industrial and Engineering Chemistry 14(4): 487-492.
Jayakumar, R.; Prabaharan, M.; Nair, S. V.; Tamura, H. 2010. Novel chitin and chitosan nanofibers in biomedical applications. Biotechnology Advances 28(1): 142-150.
Jayalakshmi, T.; Santhakumaran, A. 2011. Statistical normalization and back propagation for classification. International Journal of Computer Theory and Engineering 3(1): 1793-8201.
Jhuang, J. R.; Lou, S. N.; Lin, S. B.; Chen, S. H.; Chen, L. C.; Chen, H. H. 2020a. Immobilizing laccase on electrospun chitosan fiber to prepare time-temperature indicator for food quality monitoring. Innovative Food Science and Emerging Technologies 63(7): 102370.
Jhuang, J. R.; Lin, S. B.; Chen, L. C.; Lou, S. N.; Chen, S. H.; Chen, H. H. 2020b. Development of immobilized laccase-based time temperature indicator by electrospinning zein fiber. Food Packaging and Shelf Life 23(3): 100436.
Joshi, B.; Moreira, R. G.; Omac, B.; Castell-Perez, M. E. 2018. A process to decontaminate sliced fresh cucumber (Cucumis sativus) using electron beam irradiation. LWT-Food Science and Technology 91(5): 95-101.
Kang, S. C.; Kim, M. J.; Choi, U. K. 2007. Shelf-life extension of fresh-cut iceberg lettuce (Lactuca sativa L.) by different antimicrobial films. Journal of Microbiology and Biotechnology 17(8): 1284-1290.
Kim, J.; Grate, J. W.; Wang, P. 2006. Nanostructures for enzyme stabilization. Chemical Engineering Science 61(3): 1017-1026.
Kim, K.; Kim, E.; Lee, S. J. 2012. New enzymatic time-temperature integrator (TTI) that uses laccase. Journal of Food Engineering 113(1): 118-123.
Kim, M. J.; Shin, H. W.; Lee, S. J. 2016a. A novel self-powered time-temperature integrator (TTI) using modified biofuel cell for food quality monitoring. Food Control 70(12): 167-173.
Kim, M. J.; Park, H. R.; Lee, S. J. 2016b. Guideline for proper usage of time temperature integrator (TTI) avoiding underestimation of food deterioration in terms of temperature dependency: a case with a microbial TTI and milk. Food Science and Biotechnology 25(3): 713-719.
Koosha, M.; Mirzadeh, H. 2015. Electrospinning, mechanical properties, and cell behavior study of chitosan/PVA nanofibers. Journal of Biomedical Materials Research Part A 103(9): 3081-3093.
Kou, L.; Luo, Y.; Park, E.; Turner, E. R.; Barczak, A.; Jurick II, W. M. 2014. Temperature abuse timing affects the rate of quality deterioration of commercially packaged ready-to-eat baby spinach. Part I: sensory analysis and selected quality attributes. Postharvest Biology and Technology 91(5): 96-103.
Lee, S. B.; Jung, S. W.; Lee, S. J. 2019. Air-activation of printed time-temperature integrator: a sandwich package case study. Food Control 101(7): 89-96.
Ling, B.; Tang, J.; Kong, F.; Mitcham, E. J.; Wang, S. 2015. Kinetics of food quality changes during thermal processing: a review. Food and Bioprocess Technology 8(2): 343-358.
Lv, C.; Sun, B.; Feng, X. 2012. Application of time-temperature indicators as quality monitors in food packaging. Hans Journal of Food and Nutrition Science 1(2): 5-9.
Ma, L.; Zhang, M.; Bhandari, B.; Gao, Z. 2017. Recent developments in novel shelf life extension technologies of fresh-cut fruits and vegetables. Trends in Food Science and Technology 64(6): 23-38.
Mai, N.; Audorff, H.; Reichstein, W.; Haarer, D.; Olafsdottir, G.; Bogason, S. G.; Kreyenschmidt, J.; Arason, S. 2011. Performance of a photochromic time-temperature indicator under simulated fresh fish supply chain conditions. International Journal of Food Science and Technology 46(2): 297-304.
Majd, S. A.; Khorasgani, M. R.; Moshtaghian, S. J.; Talebi, A.; Khezri, M. 2016. Application of chitosan/PVA nano fiber as a potential wound dressing for streptozotocin-induced diabetic rats. International Journal of Biological Macromolecules 92(11): 1162-1168.
Mate, D. M.; Alcalde, M. 2015. Laccase engineering: from rational design to directed evolution. Biotechnology Advances 33(1): 25-40.
McMurchie, E. J. 1979. Temperature sensitivity of ion stimulated ATPases associated with some plant membranes. Low Temperature Stress in Crop Plants: the Role of the Membrane; Academic Press: Davis, California. 163-176.
Mercier, S.; Villeneuve, S.; Mondor, M.; Uysal, I. 2017. Time-temperature management along the food cold chain: a review of recent developments. Comprehensive Reviews in Food Science and Food Safety 16(4): 647-667.
Mohammadi, A.; Hashemi, M.; Hosseini, S. M. 2015. Chitosan nanoparticles loaded with innamomum zeylanicum essential oil enhance the shelf life of cucumber during cold storage. Postharvest Biology and Technology 110(12): 203-213.
Mohammadi, A.; Hashemi, M.; Hosseini, S. M. 2016. Postharvest treatment of nanochitosan-based coating loaded with Zataria multiflora essential oil improves antioxidant activity and extends shelf-life of cucumber. Innovative Food Science and Emerging Technologies 33(2): 580-588.
Montanari, R. 2008. Cold chain tracking: a managerial perspective. Trends in Food Science and Technology 19(8): 425-431.
Nedović, V.; Raspor, P.; Lević, J.; Šaponjac, V. T.; Barbosa-Cánovas, G. V. 2016. Emerging and Traditional Technologies for Safe, Healthy and Quality Food; Springer International Publishing: Cham, Germany. 257-268.
Olawuyi, I. F.; Park, J. J.; Lee, J. J.; Lee, W. Y. 2019. Combined effect of chitosan coating and modified atmosphere packaging on fresh‐cut cucumber. Food Science and Nutrition 7(3): 1043-1052.
Ozdemir, M.; Floros, J. D. 2004. Active food packaging technologies. Critical Reviews in Food Science and Nutrition 44(3): 185-193.
Park, H. R.; Kim, K.; Lee, S. J. 2013. Adjustment of Arrhenius activation energy of laccase-based time-temperature integrator (TTI) using sodium azide. Food Control 32(2): 615-620.
Patel, C.; Panigrahi, J. 2019. Starch glucose coating-induced postharvest shelf-life extension of cucumber. Food Chemistry 288(8): 208-214.
Pathare, P. B.; Opara, U. L.; Al-Said, F. A. J. 2013. Colour measurement and analysis in fresh and processed foods: a review. Food and Bioprocess Technology 6(1): 36-60.
Pereira Jr, V. A.; de Arruda, I. N. Q.; Stefani, R. 2015. Active chitosan/PVA films with anthocyanins from Brassica oleraceae (Red cabbage) as time-temperature indicators for application in intelligent food packaging. Food Hydrocolloids 43(1): 180-188.
Pirzada, T.; Arvidson, S. A.; Saquing, C. D.; Shah, S. S.; Khan, S. A. 2012. Hybrid silica-PVA nanofibers via sol-gel electrospinning. Langmuir 28(13): 5834-5844.
Poyatos-Racionero, E; Ros-Lis, J. V.; Vivancos, J. L.; Martínez-Máñez, R. 2018. Recent advances on intelligent packaging as tools to reduce food waste. Journal of Cleaner Production 172(1): 3398-3409.
Qian, J.; Zheng, G. L.; Feng, Q. 2012. Preparation of amylase-based time-temperature integrator. In Applied Mechanics and Materials 200(10): 433-436.
Qian, J.; Zheng, G. L.; Feng, Q. 2013. Glucoamylase time-temperature indicators based on fat oxidation of chilled pork. Food Science 18: 0-70.
Rediers, H.; Claes, M.; Peeters, L.; Willems, K. A. 2009. Evaluation of the cold chain of fresh-cut endive from farmer to plate. Postharvest Biology and Technology 51(2): 257-262.
Rico, D.; Martin-Diana, A. B.; Barat, J. M.; Barry-Ryan, C. 2007. Extending and measuring the quality of fresh-cut fruit and vegetables: a review. Trends in Food Science and Technology 18(7): 373-386.
Rijal, N. P.; Adhikari, U.; Bhattarai, N. 2017. Production of electrospun chitosan for biomedical applications. In Chitosan Based Biomaterials; Woodhead Publishing: NC, US. 1: 211-237
Rodríguez-Delgado, M. M.; Alemán-Nava, G. S.; Rodríguez-Delgado, J. M.; Dieck-Assad, G.; Martínez-Chapa, S. O.; Barceló, D.; Parra, R. 2015. Laccase-based biosensors for detection of phenolic compounds. Trends in Analytical Chemistry 74(12): 21-45.
Rojas-Mercado, A. S.; Moreno-Cortez, I. E.; Lucio-Porto, R.; Pavón, L. L. 2018. Encapsulation and immobilization of ficin extract in electrospun polymeric nanofibers. International Journal of Biological Macromolecules 118(10): 2287-2295.
Salas, C.; Thompson, Z.; Bhattarai, N. 2017. Electrospun chitosan fibers. In Electrospun nanofibers; Woodhead Publishing: Cambridge, UK. 371-398.
Sathishkumar, P.; Chae, J. C.; Unnithan, A. R.; Palvannan, T.; Kim, H. Y.; Lee, K. J.; Cho, M.; Kannan, S. K.; Oh, B. T. 2012. Laccase-poly (lactic-co-glycolic acid)(PLGA) nanofiber: highly stable, reusable, and efficacious for the transformation of diclofenac. Enzyme and Microbial Technology 51(2): 113-118.
Sathishkumar, P.; Kamala-Kannan, S.; Cho, M.; Kim, J. S.; Hadibarata, T.; Salim, M. R.; Oh, B. T. 2014. Laccase immobilization on cellulose nanofiber: the catalytic efficiency and recyclic application for simulated dye effluent treatment. Journal of Molecular Catalysis B: Enzymatic 100(2): 111-120.
Shellhammer, T. H.; Singh, R. P. 1991. Monitoring chemical and microbial changes of cottage cheese using a full‐history time‐temperature indicator. Journal of Food Science 56(2): 402-405.
Singh, R. P.; Wells, J. H. 1987. Monitoring quality changes in stored frozen strawberries with time-temperature indicators. International Journal of Refrigeration 10(5): 296-300.
Smolander, M.; Alakomi, H. L.; Ritvanen, T.; Vainionpää, J.; Ahvenainen, R. 2004. Monitoring of the quality of modified atmosphere packaged broiler chicken cuts stored in different temperature conditions: a time-temperature indicators as quality-indicating tools. Food Control 15(3): 217-229.
Song, C.; Liu, B. L.; Dong, Q. L. 2010. Current research and development trend for shelf life of frozen food. Food Science 31(1): 258-261.
Sun, D. W. 2016. Handbook of Frozen Food Processing and Packaging; Chemical Rubber Company press: London, UK. 55-82.
Suwantong, O.; Opanasopit, P.; Ruktanonchai, U.; Supaphol, P. 2007. Electrospun cellulose acetate fiber mats containing curcumin and release characteristic of the herbal substance. Polymer 48(26): 7546-7557.
Tang, X.; Sun, X.; Wu, V. C.; Xie, J.; Pan, Y.; Zhao, Y.; Malakar, P. K. 2013. Predicting shelf-life of chilled pork sold in China. Food Control 32(1): 334-340.
Tao, T.; Ding, C.; Han, N.; Cui, Y.; Liu, X.; Zhang, C. 2019. Evaluation of pulsed light for inactivation of foodborne pathogens on fresh-cut lettuce: effects on quality attributes during storage. Food Packaging and Shelf Life 21(9): 100358.
Taoukis, P. S. 2001. Modelling the use of time-temperature indicators in distribution and stock rotation. Food Process Modelling 512: 402-431.
Taoukis, P. S.; Tsironi, T. 2016. Smart packaging for monitoring and managing food and beverage shelf life. In: Stability and Shelf Life of Food; Woodhead Publishing: Cambridge, UK. 141-168.
Taştan, Ö.; Pataro, G.; Donsì, F.; Ferrari, G.; Baysal, T. 2017. Decontamination of fresh-cut cucumber slices by a combination of a modified chitosan coating containing carvacrol nanoemulsions and pulsed light. International Journal of Food Microbiology 260(11): 75-80.
Tsironi, T.; Dermesonlouoglou, E.; Giannoglou, M.; Gogou, E.; Katsaros, G.; Taoukis, P. 2017a. Shelf-life prediction models for ready-to-eat fresh cut salads: testing in real cold chain. International Journal of Food Microbiology 240(1): 131-140.
Tsironi, T.; Gogou, E.; Velliou, E.; Taoukis, P. S. 2008. Application and validation of the TTI based chill chain management system SMAS (Safety monitoring and assurance system) on shelf life optimization of vacuum packed chilled tuna. International Journal of Food Microbiology 128(1): 108-115.
Tsironi, T.; Ronnow, P.; Giannoglou, M.; Taoukis, P. 2017b. Developing suitable smart TTI labels to match specific monitoring requirements: the case of Vibrio spp. growth during transportation of oysters. Food Control 73(3): 51-56.
Vaikousi, H.; Biliaderis, C. G.; Koutsoumanis, K. P. 2009. Applicability of a microbial time temperature indicator (TTI) for monitoring spoilage of modified atmosphere packed minced meat. International Journal of Food Microbiology 133(3): 272-278.
Van der Schueren, L.; Steyaert, I.; De Schoenmaker, B.; De Clerck, K. 2012. Polycaprolactone/chitosan blend nanofibres electrospun from an acetic acid/formic acid solvent system. Carbohydrate Polymers 88(4): 1221-1226.
Waghmare, R. B.; Annapure, U. S. 2013. Combined effect of chemical treatment and/or modified atmosphere packaging (MAP) on quality of fresh-cut papaya. Postharvest Biology and Technology 85(11): 147-153.
Wang, S.; Liu, X.; Yang, M.; Zhang, Y.; Xiang, K.; Tang, R. 2015. Review of time temperature indicators as quality monitors in food packaging. Packaging Technology and Science 28(10): 839-867.
Wang, X.; Li, D. 2012. A dynamic product quality evaluation based pricing model for perishable food supply chains. Omega 40(6): 906-917.
Wang, X.; Ding, B.; Sun, G.; Wang, M.; Yu, J. 2013. Electro-spinning/netting: a strategy for the fabrication of three-dimensional polymer nano-fiber/nets. Progress in Materials Science 58(8): 1173-1243.
Wells, J. H.; Singh, R. P. 1988. Application of time‐temperature indicators in monitoring changes in quality attributes of perishable and semiperishable foods. Journal of Food Science 53(1): 148-152.
Wu, D.; Hou, S.; Chen, J.; Sun, Y.; Ye, X.; Liu, D.; Meng, R.; Wang, Y. 2015. Development and characterization of an enzymatic time-temperature indicator (TTI) based on Aspergillus niger lipase. LWT-Food Science and Technology 60(2): 1100-1104.
Wu, D.; Pan, J. Z.; Chen, J. C.; Ye, X. Q.; Liu, D. H. 2014. Dynamics research of time-temperature indicating system based on alkaline lipase. Applied Mechanics and Materials 469(11): 422-427.
Wu, D.; Wang, Y.; Chen, J.; Ye, X.; Wu, Q.; Liu, D.; Ding, T. 2013. Preliminary study on time-temperature indicator (TTI) system based on urease. Food Control 34(1): 230-234.
Xu, R.; Zhou, Q.; Li, F.; Zhang, B. 2013. Laccase immobilization on chitosan/poly (vinyl alcohol) composite nanofibrous membranes for 2,4-dichlorophenol removal. Chemical Engineering Journal 222: 321-329.
Yan, S.; Huawei, C.; Limin, Z.; Fazheng, R.; Luda, Z.; Hengtao, Z. 2008. Development and characterization of a new amylase type time-temperature indicator. Food Control 19(3): 315-319.
Yang, J. M.; Fan, C. S.; Wang, N. C.; Chang, Y. H. 2018. Evaluation of membrane preparation method on the performance of alkaline polymer electrolyte: comparison between poly (vinyl alcohol) / chitosan blended membrane and poly (vinyl alcohol) / chitosan electrospun nanofiber composite membranes. Electrochimica Acta 266(3): 332-340.
Zdarta, J.; Meyer, A. S.; Jesionowski, T.; Pinelo, M. 2018. Developments in support materials for immobilization of oxidoreductases: a comprehensive review. Advances in Colloid and Interface Science 258(8): 1-20.
Zhang, X.; Sun, G.; Xiao, X.; Liu, Y.; Zheng, X. 2016. Application of microbial TTIs as smart label for food quality: response mechanism, application and research trends. Trends in Food Science and Technology 51(5): 12-23.
Zhang, Y.; Huang, X.; Duan, B.; Wu, L.; Li, S.; Yuan, X. 2007. Preparation of electrospun chitosan / poly (vinyl alcohol) membranes. Colloid and Polymer Science 285(8): 855-863.
Zheng, F.; An, Q.; Meng, G.; Wu, X. J.; Dai, Y. C.; Si, J.; Cui, B. K. 2017. A novel laccase from white rot fungus Trametes orientalis: purification, characterization, and application. International Journal of Biological Macromolecules 102(9): 758-770.
Zhou, A.; McFeeters, R. F. 1998. Volatile compounds in cucumbers fermented in low-salt conditions. Journal of Agricultural and Food Chemistry 46(6): 2117-2122.
Zhou, C.; Dong, A.; Wang, Q.; Yu, Y.; Fan, X.; Cao, Y.; Li, T. 2017. Effect of common metal ions and anions on laccase catalysis of guaiacol and lignocellulosic fiber. BioResources 12(3): 5102-5117.
Zong, X.; Kim, K.; Fang, D.; Ran, S.; Hsiao, B. S.; Chu, B. 2002. Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer 43(16): 4403-4412.
電子全文 電子全文(網際網路公開日期:20250825)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔