(54.236.58.220) 您好!臺灣時間:2021/03/08 09:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張嘉文
研究生(外文):CHANG, CHIA-WEN
論文名稱:用於微波輻射計之高增益低雜訊放大器設計
論文名稱(外文):High-Gain Low-Noise Amplifier Design for Microwave Radiometer Applications
指導教授:邱建文邱建文引用關係
指導教授(外文):CHIU, CHIEN-WEN
口試委員:紀俞任吳俊德
口試委員(外文):CHI, YU-JENWU, CHUN-TE
口試日期:2020-07-23
學位類別:碩士
校院名稱:國立宜蘭大學
系所名稱:電子工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:74
中文關鍵詞:低雜訊放大器台積電0.18µm RF CMOS製程高電子移動率電晶體微波輻射計體內溫度測量
外文關鍵詞:low noise amplifierTSMC 0.18 µm RF CMOSHEMTmicrowave radiometerbody temperature measurement
相關次數:
  • 被引用被引用:0
  • 點閱點閱:27
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文旨在設計製作低雜訊、高增益之低雜訊放大器,並利用低雜訊放大器進行微波輻射計系統的組合與量測,以應用於量測人體皮下溫度。吾人透過低雜訊放大器的特性作為微波輻射計系統前端放大電路,以降低雜訊對微波輻射計系統之量測影響,並冀望較高之增益使微弱熱輻射訊號放大至足夠提供功率檢測器進行轉換,本文使用兩種不同製程之電路實現低雜訊放大器,並進行微波輻射計系統的架設與量測。製作本文之低雜訊放大器時,吾人選用CMOS製程與HEMT製程之離散元件電晶體,CMOS製程擁有低功耗、面積小的特性,而HEMT製程則擁有低雜訊指數、高轉導的特性,兩種製程各有其優點,電路設計操作於較不受其他頻段干擾之GPS頻段1.575 GHz,在最後以全功率輻射計架構進行微波輻射計系統製作與量測。
積體電路形式之低雜訊放大器採用台積電TSMC 0.18 µm RF CMOS製程,微波頻段之放大器電路透過疊接的方式預防出現寄生電容所會產生的米勒效應,並串接二級電路完成低雜訊放大器,以達到在單顆晶片上高增益、低雜訊指數、小面積與低功耗這些目標。晶片於台灣半導體研究中心進行量測,於VDD使用0.6 V、VB使用0.7 V時,量測得的S11為-14.7 dB,S22為-12.96 dB,S21為15.40 dB,雜訊指數為3.27 dB,IIP3計算約為-3.5 dBm,功率消耗約為1.98 mW,研究發現當電源電壓高至1 V時晶片產生振盪。
離散式元件採用的是Avago公司的ATF-55143電晶體,以及Murata公司所生產的晶片電阻、電容與電感,以印刷電路板方式實現混成式低雜訊放大器製作,電路採用的是單級共源級架構,並使用L型匹配電路搭配電感退化性放大器架構實現設計,電路使用ADS模擬軟體進行模擬設計,實作電路經匹配後測得S11與S22為-5.3 dB、-20 dB,S12為-19.2 dB,S21為10.2 dB,雜訊指數約為1.2 dB。
由於設計之ATF-55143混成式低雜訊放大器性能不佳,改使用ATF-54143製作之低雜訊放大器進行全功率輻射計之架設與量測。由兩個低雜訊放大器、一個帶通濾波器形成前端電路,再輸出至功率檢測器轉換直流電壓。全功率輻射計使用射頻訊號產生器直接輸入進行量測,輸入由-65 dBm開始至-15 dBm,量測發現全功率輻射計系統可以順利的將射頻訊號轉換直流電壓,其系統轉換射頻訊號與直流電壓成對數關係,且在輸入訊號大於-50 dBm時,系統輸出的直流電壓有明顯成長。使用低雜訊放大器做為微波輻射計之放大級,如能將接收的人體熱輻射訊號放大至足夠功率檢測器轉換,即可以透過微波輻射計系統對溫度進行分析,研究發現若低雜訊放大器設計良好之情況下其效能可以符合微波輻射計系統之需求。

The paper aims to design a low noise amplifier (LNA) to achieve low noise but high gain. The LNA is configured at the RF front-end of the microwave radiometer system that is employed to measure the temperature of human subcutaneous. The LNA circuit of the microwave radiometer system can help to reduce the influence from added noise. The high gain of the LNA is capable of amplifying the signal so that it is easy to launch the signal into the power detector to convert to DC voltage. The paper uses CMOS process and HEMT process to fabricate the LNAs. The features of CMOS are low power consumption and small chip area, but those of the HEMT process are low noise and high transconductance. The circuit was designed in the GPS Band, 1.575 GHz. The fabricated microwave radiometer system is one kinds of a total-power radiometer architecture.
The first type LNA is implanted by using TSMC 0.18 µm RF CMOS process. The modified-cascode topology is applied to the CMOS LNA to reduce the Miller effect. The two stages LNA is made by cascade topology in order to achieve the goals of high gain, low noise figure, small area and low power consumption on a single chip. The chip was measured at the TSRI. When using 0.6 V for VDD, 0.7 V for VB, the measured S11 is -14.7 dB, S22 is -12.96 dB, S21 is 15.4 dB, and noise figure is 3.27 dB. The measured IIP3 is approximately -3.5 dBm, and power consumption is only 1.98 mW. The research found that oscillation will be generated as the power supply voltage increases to 1 V.
Discrete components were assembled to fabricate the second type LNA. An Avago’s ATF-55143 transistor was utilized to design the hybrid low-noise amplifier. The LNA is designed using a common source topology of single-stage amplifier architecture. The design used an L-section method to perform impedance matching and utilized inductive degeneration feedback to reduce instability. The ADS circuit simulator was employed to perform RF circuit simulation and design. The measured S11 and S22 are -5.3 dB, -20 dB respectively, S12 is -19.2 dB, S21 is 10.2 dB, and noise figure is approximately 1.2 dB.
Since the input matching of the hybrid LNA is imperfect, the active part replaced by ATF-54143 was used to set up the total power radiometer. The front-end circuit of the radiometer is composed of two low noise amplifiers and a band-pass filter. The power detector converts the RF signal of the front-end into DC voltage output. The input power level of the RF signal generator starts from -65 dBm to -15 dBm. The RF signal and the converted DC output voltage has a logarithmic relationship, and the DC output has obvious change when the input power increases to -50 dBm. If the thermal radiation signal inside human body is amplified enough, the microwave radiometer system can retrieve the temperature information. The study verified that the performance of the low noise amplifier meets the requirements of the microwave radiometer system.

摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 viii
第 1 章 緒論 1
1.1 研究動機 1
1.2 文獻探討 2
1.3 章節介紹 4
第 2 章 低雜訊放大器介紹 6
2.1 雜訊分析 6
2.1.1 熱雜訊 6
2.1.2 散射雜訊 7
2.1.3 閃爍雜訊 7
2.1.4 雜訊指數 7
2.1.5 半導體元件雜訊來源 8
2.2 穩定度 9
2.3 線性度 9
2.3.1 1-dB增益壓縮點(1-dB Compressed Point, P1dB) 10
2.3.2三階交互調變失真(Third Order Intermodulation Distortion) 10
2.4 CMOS與HEMT元件比較 10
2.5常用低雜訊放大器架構 11
2.5.1 電阻匹配式放大器 11
2.5.2 電感退化性放大器 11
2.5.3並串回授式放大器 11
2.5.4 1/gm匹配式放大器 11
2.5.5放大器架構整理比較 12
2.6全功率輻射計介紹 12
2.7功率檢測器介紹 13
第 3 章 T18 CMOS低雜訊放大器設計 21
3.1電路架構與設計 21
3.1.1 疊接架構 21
3.1.2 基體偏壓 22
3.2電路模擬 22
3.3佈局考量 25
3.4量測結果 25
第 4 章 混成式低雜訊放大器與微波輻射計 47
4.1電路架構與設計 47
4.2電路模擬 47
4.3低雜訊放大器量測結果 48
4.4功率檢測器與濾波器 49
4.5微波輻射計系統量測 50
第 5 章 結論與未來展望 70
參考文獻 72
[1]Z. Popovic, “Radiometric thermometry for wearable deep tissue monitoring,” Ph.D. dissertation, University of Colorado at Boulder, Jan. 2017.
[2]Z. Popovic, P. Momenroodaki, and R. Scheeler, “Toward wearable thermometer for internal body temperature measurement,” IEEE Communications Magazine, Vol. 52, pp. 118–125, Oct. 2014.
[3]A. Klemetsen, Y. Birkelund, S. K. Jacobsen, P. F. Maccarini, and P. R. Stauffer, “Design of medical radiometer front-end for improved performance,” Progress in Electromagnetics Research B, Vol. 27, pp. 289-306, 2011.
[4]H. J. Hu, “Requirement and feasibility analysis of microwave radiometer system,” Thesis of Institute of Communications Engineering, National Chiao Tung University, June 2012.
[5]M. E. Tiuri, “Radio astronomy receivers,” IEEE Transactions on Antennas and Propagation, Vol. 12, no. 2, pp. 930-938, 1964.
[6]B. Eender, and G. Larson, “Microwave radiometric measurement of the temperature inside a body,” Electronics letters, Vol. 10, no. 15, July 1974.
[7]D. B. Rodrigues, P. F. Maccarini, S. Salahi, T. R. Oliveira, P. J. S. Pereira, P. L. Vieira, B. W. Snow, D. Reudink, and P. R. Stauffer, “Design and optimization of an ultra wideband and compact microwave antenna for radiometric monitoring of brain temperature,” IEEE Transactions on Biomedical Engineering, Vol. 61, no. 7, pp. 2154–2160, July 2014.
[8]K. Maruyma et al., “Feasibility of noninvasive measurement of deep brain temperature in newborn infants by multifrequency microwave radiometry,” IEEE Transactions on Microwave Theory and Techniques, Vol. 48, No. 11, pp. 2141–2147, Nov. 2000.
[9]J. L. Lin, “Design and measurement of a 23.8 GHz high accuracy microwave radiometer system,” Thesis of Institute of Communications Engineering, National Chiao Tung University, Aug. 2013.
[10]F. Ulaby, R. Moore, and A. Fung, “Microwave remote sensing fundamentals and radiometry,” Artech House, 1st Edition, Vol. 1, USA, 1981.
[11]H. H. Kang, “Design of CMOS low noise amplifier with transformer-feedback for 5.8-GHz WLAN,” Thesis of Department of Electronic Engineering, National Yilan University Library, 2006.
[12]S. I. Raham, S. A. Kareem, and S. Habeeb, “Design of a low noise amplifier using 0.18µm CMOS technology,” The International Journal of Engineering and Science (IJES), Vol. 4, pp. 11-16, June 2015.
[13]D. K. Shaeffer, and T. H. Lee, “A 1.5-V, 1.5-GHz CMOS low noise amplifier,” IEEE Journal of Solid-State Circuits, Vol. 32, no. 5, pp. 745-759, May 1997.
[14]A. R. Othman, A. B. Ibrahim, M. N. Husain, M. T. Ahmad, and M. Senon, “High gain, low noise cascode LNA using T-matching network for wireless applications,” 2012 IEEE Asia-Pacific Conference on Applied Electromagnetics (APACE), pp. 383-387, Malaysia, 2012.
[15]S. Ratan, D. Mondal, R. Anima, C. Kumar, A. Kumar, and R. Kar, “Design of 2.4 GHz differential low noise amplifier using 0.18 μm CMOS technology,” 2016 International Conference on Computing, Communication and Automation (ICCCA), pp. 1435-1439, Noida, 2016.
[16]S. C. Shin, M. D. Tsai, R. C. Liu, K. Y. Lin, and H. Wang, “A 24-GHz 3.9-dB NF low-noise amplifier using 0.18 μm CMOS technology,” IEEE Microwave and Wireless Components Letters, Vol. 15, no. 7, pp. 448-450, July 2005.
[17]E. Kargaran, H. Khosrowjerdi, K. Ghaffarzadegan, and M. Kenarroodi, “A novel high gain two stage ultra-wide band CMOS LNA in 0.18μm technology,” Proceedings of Papers 5th European Conference on Circuits and Systems for Communications (ECCSC'10), pp. 90-92, Belgrade, 2010.
[18]C. Chen, J. Lee, C. Chen, and Y. Lin, “An excellent phase-linearity 3.1-10.6 GHz CMOS UWB LNA using standard 0.18 μm CMOS technology,” 2007 Asia-Pacific Microwave Conference, pp. 1-4, Bangkok, 2007.
[19]M. W. Lin, “0.18 μm CMOS low noise amplifier and mixer for 24 GHz FMCW radar applications,” Thesis of Institute of Communications Engineering, National Chiao Tung University, June 2010.
[20]C. W. Chen, “Study of the equivalent circuit of CMOS spiral inductor,” Thesis of Institute of Communications Engineering, National Chiao Tung University, June 2005.
[21]C. H. Lin, “UWB low noise amplifier with body-biased and noise cancelling technique,” Thesis of Department of Electronic Engineering, National Yunlin University of Science and Technology, 2016.
[22]C. K. Lin, “pHEMT’s simulation、fabrication and nonlinear modeling,” Thesis of Department of Electrical Engineering, National Central University, 2006.
[23]C. Stedler, S. Werker, and R. Kronberger, “Rugged high-linearity, low-noise amplifier for 1.57-GHz GPS band,” IEEE Microwave Magazine, Vol. 14, no. 1, pp. 102-107, Jan.-Feb. 2013.
[24]O. Klemetsen, Y. Birkelund, S. K. Jacobsen, P. F. Maccarini, and P. R. Stauffer, “Design of medical radiometer front-end for improved performance,” Prog Electromagn Res B Pier B, pp. 289-306, 2011.
[25]M. R. Vidylakshmi, and K. Arunachalam, “Design of an L-band radiometer front end for medical radiometry,” 2014 Asia-Pacific Microwave Conference, pp. 950-952, Sendai, Japan, 2014.
[26]M. Tofighi, J. R. Pardeshi, and B. A. Maicke, “Microwave system and methods for combined heating and radiometric sensing for blood perfusion measurement of tissue,” 2016 IEEE MTT-S International Microwave Symposium (IMS), pp. 1-4, San Francisco, CA, 2016.
[27]Ø. Klemetsen, and S. Jacobsen, “Improved radiometric performance attained by an elliptical microwave antenna with suction,” IEEE Transactions on Biomedical Engineering, Vol. 59, no. 1, pp. 263-271, Jan. 2012.
[28]P. Woojin, and J. Jeong, “Total power radiometer for medical sensor applications using matched and mismatched noise sources,” Sensors, Switzerland, Sept. 2017.
[29]P. Momenroodaki, Z. Popovic, and R. Scheeler, “A 1.4-GHz radiometer for internal body temperature measurements,” 2015 European Microwave Conference (EuMC), pp.694-697, Paris, 2015.
[30]M. S. Cheng, “Noninvasive microwave radiometer and near-field probe design for internal body temperature measurement,” Thesis of Department of Electronic Engineering, National Yilan University Library, 2018.
[31]C. H. Lin, “Design of wearable low power RF energy harvesting rectenna,” Thesis of Department of Electronic Engineering, National Yilan University Library, 2018.
[32]N. T. Hsu, “Design and analysis of low noise amplifier exploiting noise cancellation,” Thesis of Department of Electrical Engineering, National Sun Yat-sen University, 2008.
[33]H. N. Chen, “Design and implementation of a band-notch ultra-wideband LNA with band shaping capability and a 2.5-11 GHz active matching ultra-wideband low noise amplifier,” Thesis of Institute of Communications Engineering, National Chiao Tung University, 2006.
[34]R. A. Chang, “Design and implementation of X-band RF receiver front-end circuits and E-band low noise amplifier,” Thesis of Institute of Applied Electronics Technology, National Taiwan Normal University, 2014.
[35]W. H. Hsu, “Design of CMOS 60 GHz wideband low noise amplifier and 24 GHz LNA with a honeycomb-shaped inductor,” Thesis of Department of Electrical Engineering, National Cheng Kung University, 2018.
[36]C. Y. Lin, “2.4/5.8 GHz low noise low power direct conversion receiver utilizing passive mixer and HEMT low noise amplifier,” Thesis of Institute of Communications Engineering, National Chiao Tung University, 2010.
[37]C. K. Chou, “A 6~10 GHz UWB low noise amplifier,” Thesis of Department of Electrical Engineering, National Sun Yat-sen University, 2012.
[38]Y. C. Hsu, “Design of CMOS low noise amplifier for 5.2GHz wireless local area network,” Thesis of Department of Electrical Engineering, National Chi Nan University, 2003.
[39]Avago ATF-55143 Datasheet. Available:
https://www.mouser.tw/ProductDetail/Broadcom-Avago/ATF-55143-BLKG?qs=RuhU64sK2%252BsmXDtzIwG1HQ==
[40]高銘盛,基礎電子學,滄海出版,ISBN:978-986-6889-89-9
[41]Mini-Circuits BFCN-1575+ Datasheet. Available:
https://www.minicircuits.com/WebStore/dashboard.html?model=BFCN-1575%2B
[42]Y. J. Chi, C. H. Lin, and C. W. Chiu, “Design and modeling of a wearable textile rectenna array implemented on cordura fabric for batteryless applications,” Journal of Electromagnetic Waves and Applications, July, 2020. Available:
https://www.tandfonline.com/doi/full/10.1080/09205071.2020.1787869.
[43]B. H. Lin, “Active near-field probe antenna design for subcutaneous temperature measurement,” Thesis of Department of Electronic Engineering, National Ilan University, 2020.

電子全文 電子全文(網際網路公開日期:20250810)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔