跳到主要內容

臺灣博碩士論文加值系統

(44.211.239.1) 您好!臺灣時間:2023/02/05 21:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊博仁
研究生(外文):YANG, BO-REN
論文名稱:應用於5G行動通訊系統之Sub-6 GHz與毫米波天線設計
論文名稱(外文):Designs of Sub-6 GHz and Millimeter Wave Antennas for 5G Wireless Communication Systems
指導教授:陳弘典
口試委員:陳弘典沈昭元蔡潤波
口試日期:2020-07-29
學位類別:碩士
校院名稱:國立高雄師範大學
系所名稱:光電與通訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:55
中文關鍵詞:開槽孔天線MIMO天線陣列隔離元件微帶天線陣列波束成形
外文關鍵詞:open slot antennaMIMO antenna arrayisolation elementmicrostrip antenna arraybeamforming
相關次數:
  • 被引用被引用:0
  • 點閱點閱:99
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出兩種應用於 5G 行動通訊系統之天線陣列。第一種所提設計為應用於 Sub-6 GHz 頻段的 5G 智慧型手機 10  10 MIMO 天線陣列。其整體結構使用 10支相同的開槽孔天線,設計在智慧型手機之金屬邊框,這將利於大螢幕手機的設計。單一天線結構包含 L 型開槽孔及具有微調殘段的 50-Ω 微帶饋入線,可以實現寬頻操作。在兩相鄰天線之間加入一段 L 型隔離元件,用以改善天線隔離度。本天線所完成的操作頻寬涵蓋 5G NR 頻段的 n77、n78 及 n79 頻段(3.3 ~ 5 GHz)及 WLAN5GHz 頻段(5.15 GHz ~ 5.825 GHz)。在操作頻寬內,相鄰兩天線的隔離度大於 11.5dB,ECC 小於 0.3,天線效率值最少有 43 %,擁有不錯的表現。其 10  10 MIMO天線陣列的通道容量在 20 dB SNR 環境下的理論值可以達到 54.87 bps/Hz。第二種所提設計為應用於毫米波頻段的波束成形微帶天線陣列。整體天線結構使用四組 1×4 微帶天線次陣列及四個串接式饋入網路。每一組微帶天線次陣列由一個串接式饋入網路所激發。而四個串接式饋入網路除了用以提供每個天線單元具有相同的饋入電流大小外,且分別提供給相鄰兩天線單元的輸入電流相位差為 45°、-45°、-135°及 135°。本天線陣列所完成的操作頻寬可以涵蓋 n261 頻段(27.5~ 28.35 GHz)。此外,所激發四組天線次陣列在 x-z 平面的最大輻射方向分別位於 = -20°、12°、42°及-46°,且此四組天線次陣列產生的最大增益值為 8.9、8.2、6.6及 6.1 dBi。 
This thesis proposes two designs of antenna arrays for 5G wireless communicationsystems smartphone applications. The first proposed design is a 10-element MIMOantenna array for 5G smartphone, which is designed to operate in the Sub-6 GHz band.10 identical open slots are placed on the metal-frames of 5G smartphone, which is suitablefor large screen smartphone design. Each antenna element including an L-shaped openslot and a 50-Ω microstrip feed line with tuning stub is used to realize wideband operation.Also, an L-shaped isolation element is added between two adjacent antenna elements toimprove its isolation. The achieved operating bandwidth covers the n77, n78, and n79frequency bands (3.3 ~ 5 GHz) of the 5G NR system and the WLAN-5GHz frequencyband (5.15 ~ 5.825 GHz). Within the operating bandwidth, the isolations between twoadjacent antennas are > 11.5 dB, ECC are < 0.3, and the antenna efficiency values are atleast 43%. The theoretical value of the channel capacity of its 10  10 MIMO antennaarray can reach 54.87 bps/Hz under a 20 dB SNR environment.The second proposed design is a beamforming microstrip antenna array operated inthe millimeter wave frequency band. Its overall antenna structure uses 4 sets of 1×4microstrip antenna sub-arrays excited by 4 series-fed networks, individually. The seriesfed networks are to provide each antenna element with the identical current amplitude,and the phase difference 45°, -45°, -135°, and 135° of the input current between adjacentantenna elements. The obtained operating bandwidths for all the antenna sub-array cancover the 27.5 ~ 28.35 GHz of the n261 band. The maximum radiation directions in thex-z plane for all the four antenna sub-arrays are excited at  = -20°, 12°, 42°, and -46°,and the corresponding maximum antenna gains are 8.9, 8.2, 6.6, and 6.1 dBi, individually. 
文字目錄
中文摘要...........................................................................................................................i
英文摘要..........................................................................................................................ii
文字目錄.........................................................................................................................iii
圖形目錄.........................................................................................................................iv
表格目錄...................................................................................................................…..vi
第一章 序論....................................................................................................................1
1.1 研究動機..........................................................................................................1
1.2 天線理論概述..................................................................................................5
1.3 文獻導覽..........................................................................................................7
1.4 論文提要..........................................................................................................9
第二章 5G 智慧型手機之寬頻 MIMO 天線設計.......................................................10
2.1 前言................................................................................................................10
2.2 十埠寬頻開槽孔 MIMO 天線陣列...............................................................11
2.3 天線結果與討論............................................................................................13
2.4 心得與討論....................................................................................................16
第三章 毫米波波束成形天線陣列設計......................................................................29
3.1 前言......................................................................................................29
3.2 波束成形天線陣列結構與原理....................................................................30
3.3 波束成形天線陣列結果與討論....................................................................36
3.4 心得與討論....................................................................................................39
第四章 結論..................................................................................................................52
參考文獻........................................................................................................................53


圖形目錄
圖1.1 5G 的多樣化應用服務....................................................................................2
圖1.2 5G 技術三大目標...........................................................................................2
圖1.3 不同相位輸入點波源陣列之波前方向..........................................................6
圖1.4 等間距線性排列之 n 個點波源陣列..............................................................6
圖2.1 應用於 5G 智慧型手機十埠 MIMO 天線陣列;(a)結構圖,(b)實體圖... 17
圖2.2 單一天線(含隔離元件)結構圖..................................................................... 17
圖2.3 Ant1 改變微調殘段長度 t 的模擬輸入阻抗結果;(a)輸入電阻,(b)輸入電
抗....................................................................................................................18
圖2.4 Ant1 改變微調殘段長度 t 的模擬返回損失結果........................................ 19
圖2.5 Ant1 改變饋入位置 k 的模擬輸入阻抗結果;(a)輸入電阻,(b)輸入電抗
........................................................................................................................20
圖2.6 Ant1 改變饋入位置 k 的模擬返回損失結果 ............................................... 21
圖2.7 Ant1 槽孔內的模擬電場強度分佈結果;(a) 3.5 GHz,(b) 5.5 GHz ......... 21
圖2.8 無隔離元件時 Ant1 ~ Ant5 之模擬反射係數結果 ...................................... 22
圖2.9 有隔離元件時 Ant1 ~ Ant5 模擬與量測反射係數結果;(a)模擬,(b)量測
........................................................................................................................23
圖2.10 無隔離元件時 Ant1 ~ Ant5 之模擬傳輸係數結果 ...................................... 24
圖2.11 有隔離元件時 Ant1 ~ Ant5 模擬與量測傳輸係數結果;(a)模擬,(b)量測
........................................................................................................................25
圖2.12 Ant1 ~ Ant5 之模擬天線效率結果(有隔離元件) ....................................... 26
圖2.13 手掌握著手機所得 Ant1 ~ Ant5 之模擬天線效率(有隔離元件) .............. 26
圖2.14 Ant1 模擬二維輻射場型結果;(a) 在 3.5 GHz,(b)在 5.5 GHz。(有隔離元
件).................................................................................................................27
圖2.15 所提 MIMO 天線之模擬封包相關係數結果。(有隔離元件) .................. 28
圖2.16 10  10 MIMO 系統的通道容量計算值.......................................................28
圖3.1 所提毫米波波束成形天線陣列;(a)整體配置圖,(b)單一天線詳細尺寸 40
圖3.2 四個饋入網路 P1 ~ P4 結構及詳細尺寸。饋入位置為點 0,輸出端點為
1、2、3 及 4..................................................................................................41
圖3.3 單一微帶天線的模擬輸入阻抗....................................................................41
圖3.4 饋入網路 P1 激發所得的模擬傳輸係數及相鄰輸出埠的相位差結果;(a)傳
輸係數,(b)相位差.......................................................................................42
圖3.5 饋入網路 P2 激發所得的模擬傳輸係數及相鄰輸出埠的相位差結果;(a)傳
輸係數,(b)相位差.......................................................................................43
圖3.6 饋入網路 P3 激發所得的模擬傳輸係數及相鄰輸出埠的相位差結果;(a)傳
輸係數,(b)相位差.......................................................................................44
圖3.7 饋入網路 P4 激發所得的模擬傳輸係數及相鄰輸出埠的相位差結果;(a)傳
輸係數,(b)相位差.......................................................................................45
圖3.8 四個饋入網路 P1 ~ P4 分別用來激發 1×4 天線次陣列所得的返回損失結果
........................................................................................................................46
圖3.9 四個饋入網路 P1 ~ P4 分別激發 1×4 天線次陣列所得 28 GHz 的模擬 2D
輻射場型;(a) P1,(b) P2,(c) P3,(d) P4................................................. 48
圖3.10 四個饋入網路 P1 ~ P4 分別激發 1×4 天線次陣列,所得 28 GHz 在 x-z 平
面的模擬????∅輻射場........................................................................................49
圖3.11 四個饋入網路分別激發 1×4 天線次陣列所得 28 GHz 的模擬 3D 輻射場
型;(a) P1,(b) P2,(c) P3,(d) P4 ............................................................. 50
圖3.12 四個饋入網路 P1 ~ P4 分別激發 1×4 天線次陣列所得的模擬天線增益結果
........................................................................................................................51
圖3.13 四個饋入網路 P1 ~ P4 分別激發 1×4 天線次陣列所得的模擬天線效率 . 51


表格目錄
表1.1 相關國家的 5G 頻譜劃分表.............................................................................3
表1.2 NCC 在 2020 年開放電信業者競標 5G 頻譜結果..........................................3
表2.1 手掌的介質參數..............................................................................................15
表3.1 饋入網路 P1 各線段特性阻抗、長度及寬度................................................34
表3.2 饋入網路 P2 各線段特性阻抗、長度及寬度................................................34
表3.3 饋入網路 P3 各線段特性阻抗、長度及寬度................................................35
表3.4 饋入網路 P4 各線段特性阻抗、長度及寬度................................................35
表3.5 饋入網路 P1 ~ P4 激發在 28 GHz 的模擬傳輸係數....................................36
表3.6 饋入網路 P1 ~ P4 激發在 28 GHz 時相鄰輸出埠的模擬相位差................37
表3.7 四個饋入 P1 ~ P4 所激發在 x-z 平面的最大輻射角 ....................................37
參考文獻
(References)
[1]https://drive.google.com/file/d/1wdWt2YrjMbCky3zth6PknFrxaD5OBWu7/view
[2]https://www.ncc.gov.tw/chinese/files/18102/5056_40607_181023_1.pdf
[3]https://www.2cm.com.tw/2cm/zhtw/market/3C52541C68E34E44A7ADC37E044C0BB8
[4]https://www.ncc.gov.tw/chinese/files/20022/8_42757_200221_1.pdf
[5] M. S. Sharawi,“Printed multi-band MIMO antenna systems and their performance
metrics,” IEEEAntennas Propag. Magazine, vol. 55, no. 5, pp.212-232, Oct. 2013.
[6] K. L. Wong,and J. Y. Lu, “3.6-GHz 10-antenna array for MIMO operation in the
smartphone,”Microw. Opt. Technol. Lett., vol. 57, no. 7, pp. 1699-1704, July 2015.
[7] K.L. Wong, C.Y. Tsai, and J. Y. Lu, “Two asymmetrically mirrored gap-coupled
loop antennas as acompact building block for eight-antenna MIMO array in the
futuresmartphone,” IEEE Trans. Antennas Propag., vol. 65 no. 4, Apr. 2017.
[8] Y. L. Ban, C.Li, C. Y. D. Sim, G. Wu, and K. L. Wang, “4G/5G multiple antennas
for futuremulti-mode smartphone applications,” IEEE Access., vol. 4, pp. 2169-
3536, June. 2016.
[9] K. L. Wong, B.W. Lin, and B.W. Y. Li, “Dual‐band dual inverted‐F/loop
antennas as acompact decoupled building block for forming eight 3.5/5.8‐GHz
MIMO antennas inthe future smartphone,” Microw. Opt. Technol. Lett., vol. 59,
no. 11, pp.2715-2721, 2017.
[10] H. D. Chen,Y.C. Tsai, C. Y. D. Sim, and C. Kuo, “Broadband eight-antenna array
design for sub-6GHz 5G NR bands metal-frame smartphone applications,” IEEE
Antennas WirelessPropag. Lett., vol. 19, no. 7, July 2020.
[11] X. T. Yuan,W. He, K. D. Hong, C. Z. Han, Z. Chen, and T. Yuan, “Ultra-wideband
MIMO antennasystem with high element-isolation for 5G smartphone
application,” IEEEAccess., vol. 8, pp. 56281-56289, Mar. 2020.
[12] S. Zhang, B.K. Lau, Y. Tan, Z. Ying, and S. He, “Mutual coupling reduction of
two PIFAs with aT-Shape slot impedance transformer for MIMO mobile
terminals,” IEEETrans. Antennas Propag.,vol. 60, no. 3, Mar. 2012.
[13] S. C. Chen,P. W. Wu ,C. G. Hsu, and J. Y. Sze, “Integrated MIMO slot antenna on
laptop computerfor eight-band LTE/WWAN operation,” IEEE Trans. Antennas
Propag., vol. 66,no. 1, Jan. 2018.
[14] W. Jiang, B.Liu, Y. Cui, and W. Hu, “High-isolation eight-element MIMO array
for 5G smartphoneapplications,” IEEE Access, vol. 7,pp. 34104-34112, Mar. 2019.
[15] M. Wang, B.Xu, Y. Lou, H. Zou, and G. Yang, “Multiband multiple-input
multiple-outputantenna with high isolation for future 5G smartphone applications,”
Int. J. RF Microw.Comput. Aided Eng., vol. 29, no. 7, e21758, July 2019.
[16] J. Guo, L.Cui, C. Li, and B. Sun, “Side-edge frame printed eight-port dual-band
antenna array for5G smartphone applications,” IEEE Trans. Antennas Propag.,
vol. 66, no. 12,Dec. 2018.
[17] M. Y. Li, etal. “Eight port orthogonally dual-polarized antenna array for 5G
smartphoneapplications,” IEEE Trans. Antennas Propag., vol. 64, no. 9, pp. 3820-
3830, Sep. 2016.
[18] Y. Li, C. Y.D. Sim, Y. Luo, and G. Yang, “High-isolation 3.5 GHz eight-antenna
MIMO array usingbalanced open-slot antenna element for 5G smartphones,”
IEEE Trans.Antennas Propag., vol. 67, no. 6, pp. 3820-3830, Mar. 2019
[19] S. W. Su, C.T. Lee, and Y. W. Hsiao, “Compact two-inverted-F-antenna system
with highlyintegrated π-shaped decoupling structure,” IEEE Trans. Antennas
Propag., vol. 67,no. 9, Sep. 2019.
[20] W. Jiang, Y.Cui, B. Liu, W. Hu, and Y. Xi, “A dual-band MIMO antenna with
enhanced isolationfor 5G smartphone applications,” IEEE Access., vol. 7, pp.
112554-112563,Aug. 2019.
[21] Y. Li and G.Yang, “Dual-mode and triple-band 10-antenna handset array and its
multiple-inputmultiple-output performance evaluation in 5G,” Int. J. RF Microw.
Comput. AidedEng., vol. 29, no. 2, e21538, Feb. 2019.
[22] Y. Li, C. Y.D. Sim, Y. Luo, and G. Yang, “12-port 5G massive MIMO antenna
array in sub-6GHzmobile handset for LTE bands 42/43/46 applications,” IEEE
Access., vol. 6,pp. 344-354, Oct. 2017.
[23] Y. Li, C. Y.D. Sim, Y. Luo, and G. Yang, “Multiband 10-antenna array for sub-6
GHz MIMOapplications in 5-G smartphones,” IEEE Access., vol. 6, pp. 28041-
28253, Jun. 2018.
[24] 蔡元中, “應用於 5G 智慧型手機之寬頻 MIMO 天線設計”, 高雄師範大學光
電與通訊工程學系碩士論文, 2019.
[25] K. T. Trinh,J. Feng, S. H. Shehab, and N. C. Karmakar, ”1.4 GHz low-cost PIN
diode phaseshifter for L-band radiometer antenna,” IEEE Access., vol. 7,pp.
95274-95284, Aug.2019.
[26] B. Rupakula,A. Nafe, S. Zihir, T. W. Lin, and G. M. Rebeiz, “A 64 GHz 2 Gbps
transmit/receivephased array communication link in SiGe with 300 Meter
coverage,” IEEEMTT-S IMS, Honololu, Oct. 2017.
[27] B. Yu, K.Yang, C. Y. D. Sim, and G. Yang, “A novel 28 GHz beam steering array
for 5G mobiledevice with metallic casing application,” IEEE Trans. Antenna.
Propag., vol. 66,no. 1, Jan. 2018.
[28] S. Kaushaland N. Guan, “3-D beamforming wideband antenna for 5G application,”
IEEE PIERS-Spring,Rome, Mar. 2020.
[29] S. Tariq, D.Psychoudakis, O. Eliezer, and F. Khan, “A new approach to antenna
beamforming formillimeter-wave fifth generation (5G) systems,” IEEE Texas
Symp. WMCS, Waco,July 2018.
[30] H. Moody,“The systematic design of the Butler matrix,” IEEE Trans. Antennas
Propag., vol. 12,no. 6, pp. 786-788, 1964.
[31] H. N. Chu andT. G. Ma, “An extended 4×4 Butler matrix with enhanced beam
controllabilityand widened spatial coverage,” IEEE Trans. Microw. Theory Tech.,
vol. 66, no. 3,pp. 1301-1311, Mar. 2017.
[32] C. Z. Han, G.L. Huang, T. Yuan, and C. Y. D. Sim, “A dual-band millimeter-wave
antenna for 5Gmobile applications,” IEEE Int. Symp. on Antenna Propag. USNCURSI Radio ScienceMeeting, Atlanta, Oct. 2019.
[33] N. O.Parchin, M. Shen, and G. F. Pedersen, “End-fire phased array 5G antenna
design usingleaf-shaped bow-tie elements for 28/38 GHz MIMO applications,”
IEEE ICUWB,Nanjing, Dec. 2016.
[34]https://www.speag.webtest.oetiker.ch/products/em-phantoms/ctia-sub-10/shov3rw-clw-c/
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top