(44.192.10.166) 您好!臺灣時間:2021/03/06 20:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:江文賢
研究生(外文):CHIANG,WEN-HSIEN
論文名稱:直接成長二硫化鉬奈米片在咖啡渣製備的水合活性碳上並應用於電化學超級電容器
論文名稱(外文):Directly Growing MoS2 Nanoflakes on Hydrated Activated Carbon Prepared from Coffee Grounds and Applied in Electrochemical Supercapacitors
指導教授:高立衡高立衡引用關係
指導教授(外文):KAO,LI-HENG
口試委員:林鉉凱莊高樹高立衡
口試委員(外文):LIN,HSUAN-KAICHUANG,KAO-SHUKAO,LI-HENG
口試日期:2020-06-24
學位類別:碩士
校院名稱:國立高雄科技大學
系所名稱:化學工程與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:79
中文關鍵詞:咖啡渣活性碳二硫化鉬電化學超級電容器
外文關鍵詞:Coffee groundsActivated carbonMolybdenum disulfideSupercapacitor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:34
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用化學活化方式將咖啡渣製成活性碳(AC),再與鉬酸鈉(Na2MoO4∙2H2O)、硫脲(CH4N2S)均勻混和後,以水熱法合成出表面具有片狀結構垂直生長在活性碳表面的二硫化鉬/活性碳(M/AC)複合材料;依比例將M/AC和聚偏二氟乙烯(PVDF)N-甲基-2-吡咯烷酮(NMP)中混合,以塗佈方式附著在碳紙上。
以活性碳作為基材的M/AC複合材經由X光繞射儀鑑定其結構特性,仍保有AC與MoS2晶相(JCPDS#41-1487及JCPDS#37-1492)。以SEM觀察複合材表面結構與結晶,可以觀察到MoS2確實垂直生長在AC上,HRTEM可以看到MoS2具有高比例1T(Trigonal)金屬相,在BET與電化學檢測中可以看到不同比例所合成的複合材對於材料的各種特性的影響,AC的比表面積本身比MoS2要高出許多,而MoS2本身的導電性與離子吸附效應比AC還要來的大,但還是需要正確的合成比例才能夠產生協同效應達到加乘的效果。
在本實驗中已成功製備出二硫化鉬/活性碳複合材,最大比電容在1A/g時達到271F/g。 此外,該電極在8A/g的電流密度下經過1000次循環後,具有出色的循環穩定性和約100 %的電容保持率,二硫化鉬/活性碳複合材的出色性能受益於垂直生長的層狀MoS2和活性碳大比表面積之間的協同效應。

In this study, the coffee grounds were made into activated carbon (AC) by chemical activation, and then evenly mixed with sodium molybdate (Na2MoO4∙2H2O) and thiourea (CH4N2S) to synthesize molybdenum disulfide (MoS2) with a nanoflakes structure by hydrothermal method. MoS2 nanoflakes were vertically embedded on the surface of AC to form a MoS2/AC composite material. MoS2/AC, polyvinylidene fluoride (PVDF), and N-methyl-2-pyrrolidone (NMP) were mixed in proportion and then coated on carbon paper, as the anode of the capacitor.
The MoS2/AC composite material was characterized by an X-ray diffractometer, and the results showed that it had AC and MoS2 crystal phases (JCPDS#41-1487 and JCPDS#37-1492). The surface structure of the composites was observed by SEM, it can be observed that MoS2 nanoflakes were vertically embedded on the surface of AC. From the results of HRTEM, a majority proportion of MoS2 nanoflakes with the 1T (Trigonal) metal phase. In the results of BET and electrochemical detection, it can be seen that the composite materials synthesized in different proportions affect the various characteristics of the material. The specific surface area of AC is much higher than MoS2, but the conductivity and ion adsorption effect of MoS2 is greater than AC. However, it still needs the optimized composition ratio to produce a synergistic effect to achieve the effect multiplication.
In this experiment, MoS2/AC composite has been successfully prepared, and the maximum specific capacitance reaches 271 F/g at 1 A/g. In addition, the electrode has excellent cycle stability and a capacitance retention rate of 100% after 1000 cycles at a current density of 8 A/g. The excellent performance of the MoS2/AC composite material benefits from the synergistic effect of the vertical growing MoS2 nanoflakes and the large specific surface area of activated carbon.

摘要 I
Abstract III
誌謝 V
總目錄 VI
表目錄 X
圖目錄 XI
第一章 緒論 1
第二章 基本原理與文獻回顧 4
2-1 活性碳簡介 4
2-2 超級電容器(Super capacitor) 6
2-2-1 電雙層電容(EDLC) 7
2-2-2 偽電容(Pseudocapacitor) 8
2-3 二維層狀結構的材料應用於超級電容器之電極 9
2-4 TMDs複合材料合成 11
2-4-1 水/溶劑熱法 11
2-4-2 微波輔助和成法 11
2-4-3 噴塗法 12
2-5 MoS2特性 12
2-6 電化學原理與測量方法 13
第三章 實驗方法與步驟 17
3-1 實驗藥品 17
3-2 分析儀器及設備 18
3-3實驗流程 20
3-3-1 咖啡渣活性碳(Activated Carbon)之製備 20
3-3-2 活性碳二硫化鉬(AC/MoS_2)複合材料之製備 21
3-3-3 電極製備 22
3-4 材料分析儀器介紹 24
3-4-1 X光繞射儀(X-ray Diffractometer,XRD) 24
3-4-2 超高解析度熱場發射掃描式電子顯微鏡(Field Emission Scanning Electron Microscope,FE-SEM) 25
3-4-3 場發射穿透式電子顯微鏡(Field Emission Transmission Electron Microscope) 26
3-4-4 比表面積與孔隙度分析儀(Specific Surface Area and Poro Size Distribution Analyzer,BET) 26
3-4-5 恆電位/電流/交流阻抗儀(Potentiostat/Galvanostat/Fras) 31
3-5 電極之電化學性質 32
3-5-1 循環伏安曲線測量 32
3-5-2 計時電位曲線測量 33
3-6 電化學電容器之比電容計算 33
3-6-1 計時電位法 34
3-6-2 循環伏安法 34
3-7 電化學電容器之功率能量密度計算 35
3-8 交流阻抗分析 35
第四章 結果與討論 36
4-1 SEM&TEM材料表面結構 36
4-2 XRD材料晶像鑑定 49
4-3 Raman特徵峰鑑定 50
4-4 BET材料比表面積分析 51
4-5 電化學電性測試結果 53
第五章 結論 60
參考文獻 61


【1】USDA, Coffee:World Markets and Trade.
https://www.fas.usda.gov/data/coffee-world-markets-and-trade.
【2】中央通訊社,產經(2019). https://www.cna.com.tw/news/afe/201911280244.aspx.
【3】Simon, P.; Gogotsi, Y., Materials for electrochemical capacitors. In Nanoscience and technology: a collection of reviews from Nature journals, World Scientific: 2010; pp 320-329.
【4】Kim, T.; Lee, H., ACS Nano, 2011, 5, 436–442;(d) MG Stoller, S. Park, Y. Zhu, J. An and RS Ruff. Nano Lett 2008, 8, 3498-3502.
【5】Zhang, J.; Zhao, X., On the configuration of supercapacitors for maximizing electrochemical performance. ChemSusChem 2012, 5, 818-841.
【6】Chou, T. c.; Doong, R. a.; Hu, C. c.; Zhang, B.; Su, D. S., Hierarchically porous carbon with manganese oxides as highly efficient electrode for asymmetric supercapacitors. ChemSusChem 2014, 7, 841-847.
【7】Mai, L.; Li, H.; Zhao, Y.; Xu, L.; Xu, X.; Luo, Y.; Zhang, Z.; Ke, W.; Niu, C.; Zhang, Q., Fast ionic diffusion-enabled nanoflake electrode by spontaneous electrochemical pre-intercalation for high-performance supercapacitor. Scientific reports 2013, 3, 1-8.
【8】林經博、謝明進、李建甫、黃昭銘、廖德瑞 2013台灣化學工程學會60週年年會論文運用椰殼纖維製備高比表面積活性碳及其應用. http://teachers.ksu.edu.tw/charming/learn/data/paper/D-016.pdf.
【9】Danish, M.; Ahmad, T., A review on utilization of wood biomass as a sustainable precursor for activated carbon production and application. Renewable and Sustainable Energy Reviews 2018, 87, 1-21.
【10】Oh, G. H.; Park, C. R., Preparation and characteristics of rice-straw-based porous carbons with high adsorption capacity. Fuel 2002, 81, 327-336.
【11】Wang, J.; Kaskel, S., KOH activation of carbon-based materials for energy storage. Journal of Materials Chemistry 2012, 22, 23710-23725.
【12】Hu, Z.; Vansant, E., Synthesis and characterization of a controlled-micropore-size carbonaceous adsorbent produced from walnut shell. Microporous materials 1995, 3, 603-612.
【13】袁國輝 電化學電容器,化學工業出版社(2006).
【14】Long, J. W.; Bélanger, D.; Brousse, T.; Sugimoto, W.; Sassin, M. B.; Crosnier, O., Asymmetric electrochemical capacitors—Stretching the limits of aqueous electrolytes. Mrs Bulletin 2011, 36, 513-522.
【15】蕭閔謙 合成具層狀結構之過渡金屬硫化物及其在電化學超級電容器的應用. http://thuir.thu.edu.tw/retrieve/30402/104THU00065011-001.pdf.
【16】Tan, C.; Zhang, H., Two-dimensional transition metal dichalcogenide nanosheet-based composites. Chemical Society Reviews 2015, 44, 2713-2731.
【17】Zhao, J.; Zhang, Y.; Wang, Y.; Li, H.; Peng, Y., The application of nanostructured transition metal sulfides as anodes for lithium ion batteries. Journal of energy chemistry 2018, 27, 1536-1554.
【18】Gan, X.; Lee, L. Y. S.; Wong, K.-y.; Lo, T. W.; Ho, K. H.; Lei, D. Y.; Zhao, H., 2H/1T phase transition of multilayer MoS2 by electrochemical incorporation of S vacancies. ACS Applied Energy Materials 2018, 1, 4754-4765.
【19】Bozheyev, F.; Zhexembekova, A.; Zhumagali, S.; Molkenova, A.; Bakenov, Z., MoS2 nanopowder as anode material for lithium-ion batteries produced by self-propagating high-temperature synthesis. Materials Today: Proceedings 2017, 4, 4567-4571.
【20】Comini, E.; Cristalli, A.; Faglia, G.; Sberveglieri, G., Light enhanced gas sensing properties of indium oxide and tin dioxide sensors. Sensors and Actuators B: Chemical 2000, 65, 260-263.
【21】胡啟章 電化學原理與方法,五南圖書(2002).
【22】IU South Bend Chemistry and Biochemistry. . http://iusbchemistry.blogspot.com/p/ppt.html.
【23】羅聖全 科學基礎研究之重要利器─掃描式電子顯微鏡(2013). https://activity.ntsec.gov.tw/activity/ssm/52_5/files/assets/basic-html/page4.html.
【24】林昆霖 肉眼看不見的奈米級材料及元件檢測分析就靠穿透式電子顯微鏡(2013). http://www.airitilibrary.com/Publication/alDetailedMesh?DocID=1029502x-201306-201308140015-201308140015-34-38.
【25】Thommes, M.; Kaneko, K.; Neimark, A. V.; Olivier, J. P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K. S., Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry 2015, 87, 1051-1069.
【26】工研院材化所 表面增強拉曼散射光譜的發展與應用(2008) https://www.materialsnet.com.tw/DocView.aspx?id=7203.
【27】Thi Xuyen, N.; Ting, J. M., Hybridized 1T/2H MoS2 having controlled 1T concentrations and its use in supercapacitors. Chemistry–A European Journal 2017, 23, 17348-17355.
【28】Choi, P. R.; Lee, E.; Kwon, S. H.; Jung, J. C.; Kim, M.-S., Characterization and organic electric-double-layer-capacitor application of KOH activated coal-tar-pitch-based carbons: effect of carbonization temperature. Journal of Physics and Chemistry of Solids 2015, 87, 72-79.
【29】Rufford, T. E.; Hulicova-Jurcakova, D.; Zhu, Z.; Lu, G. Q., Empirical analysis of the contributions of mesopores and micropores to the double-layer capacitance of carbons. The Journal of Physical Chemistry C 2009, 113, 19335-19343.
【30】Wang, C.-H.; Wen, W.-C.; Hsu, H.-C.; Yao, B.-Y., High-capacitance KOH-activated nitrogen-containing porous carbon material from waste coffee grounds in supercapacitor. Advanced Powder Technology 2016, 27, 1387-1395.
【31】Li, X.; Zhang, C.; Xin, S.; Yang, Z.; Li, Y.; Zhang, D.; Yao, P., Facile synthesis of MoS2/reduced graphene oxide@ polyaniline for high-performance supercapacitors. ACS applied materials & interfaces 2016, 8, 21373-21380.
【32】Xie, B.; Chen, Y.; Yu, M.; Sun, T.; Lu, L.; Xie, T.; Zhang, Y.; Wu, Y., Hydrothermal synthesis of layered molybdenum sulfide/N-doped graphene hybrid with enhanced supercapacitor performance. Carbon 2016, 99, 35-42.
【33】Zheng, S.; Zheng, L.; Zhu, Z.; Chen, J.; Kang, J.; Huang, Z.; Yang, D., MoS 2 nanosheet arrays rooted on hollow rGO spheres as bifunctional hydrogen evolution catalyst and supercapacitor electrode. Nano-micro letters 2018, 10, 62.


電子全文 電子全文(網際網路公開日期:20250719)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔