跳到主要內容

臺灣博碩士論文加值系統

(44.200.169.3) 您好!臺灣時間:2022/12/04 19:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:方星淵
研究生(外文):FANG, SING-YUAN
論文名稱:以水熱法製備ZnS-PbS量子點於Au/TiO2光觸媒應用於產氫之研究
論文名稱(外文):Hydrothermal Synthesis of ZnS-PbS Quantum Dots on Au/TiO2 Photocatalyst for Hydrogen Production
指導教授:楊文都楊文都引用關係
指導教授(外文):YANG, WEIN-DUO
口試委員:楊乾信何詠碩林文崇楊文都
口試委員(外文):YANG, CHIEN-HSINHO, YUNG-SHOULIN, WEN-CHURNGYANG, WEIN-DUO
口試日期:2020-06-01
學位類別:碩士
校院名稱:國立高雄科技大學
系所名稱:化學工程與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:134
中文關鍵詞:量子點二氧化鈦硫化鋅硫化鉛產氫
外文關鍵詞:Quantum dotsTiO2ZnSPbSHydrogen production
相關次數:
  • 被引用被引用:0
  • 點閱點閱:149
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
本研究以沉積-沉澱法製備Au/TiO2光觸媒,再以水熱法將ZnS和PbS量子點(Quantum dots, QDs)負載於Au/TiO2上,製得(ZnS-PbS)/Au/TiO2光觸媒,並討論甲醇犧牲試劑之光催化產氫的影響。先以測得負載2 wt.% Au/TiO2具最佳產氫量後,以2 wt.% Au/TiO2為基礎,再逐一負載硫化物ZnS QDs及PbS QDs於其上,針對(ZnS-PbS)/Au/TiO2光觸媒,探討改變製備條件之水熱溫度(如:120 ℃、140 ℃ 、160 ℃、180 ℃等),和硫化物QDs對TiO2之莫耳比(如:0.1、0.2、0.3),並進行TEM、SEM、XRD、UV-Vis-NIR、PL、BET、GC-TCD等分析,了解硫化物QDs對TiO2之莫耳比在不同溫度下對產氫之影響。結果顯示,負載Au NPs及ZnS-PbS QDs,有效改善TiO2對太陽光能之吸收,且明顯降低電子-電洞對之再結合,使之提升產氫效率,以在水熱溫度120 ℃、硫化物ZnS-PbS QDs對TiO2莫耳比為0.2時,具最佳產氫效率,添加20 %甲醇犧牲試劑狀況下,光觸媒之產氫量達 5011 μmol/g・h。
In order to study hydrogen production efficiency by (ZnS-PbS)/Au/TiO2 photocatalyst, used methanol as sacrificial reagent. Deposition-precipitation method was used fabricate to Au/TiO2 photocatalyst. Furthermore, utilizing hydrothermal method to synthesize ZnS-PbS quantum dots on Au/TiO2 photocatalyst. At was found that on the basis of 2 wt.% Au/TiO2, composited of ZnS-PbS quantum dots on Au/TiO2 exhibited the best hydrogen production efficiency photocatalyst. The Hydrothermal temperature (120 ℃, 140 ℃, 160 ℃, 180 ℃), and sulfide mole fraction of quantum dots (0.1, 0.2, 0.3) were investigated their influences on the photocatalyst efficience. The physiscal property of (ZnS-PbS)/Au/TiO2 photocatalyst was examined by TEM, SEM, XRD, UV-Vis-NIR, PL, BET, and GC-TCD. The results show that ZnS-PbS quantum dots on Au/TiO2 photocatalyst can improve the absorption of solar energy and decrease recombination of electron-hole pairs. The best of hydrogen production with a yield of 5011 μmol/g・h was achieved, when the photocatalyst prepared by hydrothermal temperature at 120 ℃, the sulfide of ZnS-PbS QDs mole fraction at 0.2, and 20 % of methanol sacrificial reagent applied.
目錄

中文摘要.......................................................................................................I
Abstract.....................................................................................................III
致 謝............................................................................................................V
表目錄..................................................................................................... X
圖目錄........................................................................................................ XI
第一章 緒論 1
1-1 前言 1
1-2 研究動機 3
1-3 研究目的 4
第二章 文獻回顧 5
2-1 光觸媒之特性 5
2-2 半導體分解水產氫原理 7
2-3 奈米二氧化鈦光觸媒 12
2-4 二氧化鈦分解水產氫之瓶頸及改善方法 15
2-4-1 光催化分解水產氫之瓶頸 15
2-4-2 改質二氧化鈦提升產氫效率 18
2-4-3 化學添加以提升產氫量 30
2-5量子點(Quantum dots, QDs) 32
2-5-1 量子點 32
2-5-2 量子點特性 35
2-5-3 硫化鉛-硫化鋅光催化之應用 38
2-6 (ZnS-PbS)/Au/TiO2光觸媒反應機制 41
第三章 實驗方法與步驟 43
3-1 實驗藥品 43
3-2 實驗設備儀器 44
3-3 實驗流程 45
3-3-1 Au/TiO2之製備 45
3-3-2 (ZnS-PbS)/Au/TiO2之製備 47
3-3-3 (ZnS-PbS)/Au/TiO2之命名方式 50
3-3-4 光催化分解水產氫系統 51
3-4 儀器分析 53
3-4-1 穿透式電子顯微鏡(Transmission electron microscope, TEM) 53
3-4-2 高解析場發射型掃描式電子顯微鏡(FE-Scanning electronic microscopy, FE-SEM) 54
3-4-3 X-光繞射分析儀(X-ray diffractometer, XRD) 55
3-4-4 紫外光-可見光-近紅外光吸收光譜儀(Ultraviolet-Visible-Near infrared, UV-Vis-NIR) 57
3-4-5 光激螢光光譜儀(Photoluminescence, PL) 58
3-4-6 BET比表面積分析儀/孔隙度分析儀(Brunauer-Emmett-Teller Specific surface area and porosity analyzer, BET) 59
3-4-7 氣相層析儀-熱導偵測器(Gas chromatograph-Thermal conductivity detector, GC-TCD) 60
第四章 結果與討論 63
4-1 材料特性分析 63
4-1-1 穿透式電子顯微鏡分析(TEM) 63
4-1-2 掃描式電子顯微鏡分析(SEM) 66
4-1-3 X光繞射分析(XRD) 69
4-1-4 紫外-可見-近紅外光光譜分析(UV-Vis-NIR) 73
4-1-5 Tauc曲線能隙分析 79
4-1-6 螢光光譜分析(PL) 83
4-1-7 比表面積分析(BET) 89
4-2 光觸媒產氫測試 95
4-2-1 TiO2中負載Au NPs及硫化物QDs對產氫之影響 95
4-2-2 (Z-P)x/2A/T z之製備溫度及有無甲醇犧牲試劑之比較 100
4-2-3 (Z-P)x/2A/T z之改變硫化物濃度及有無甲醇犧牲試劑之比較 104
第五章 結論 108
第六章 參考文獻 110

表目錄

表2-1 TiO2上負載金屬元素之光催化分解水進展 22
表2-2 二元TiO2共觸媒之光催化產氫 28
表2-3 三元TiO2複合光觸媒之光催化產氫 29
表3-1 實驗藥品 43
表3-2 實驗設備儀器 44
表3-3 GC-TCD參數設定 62
表4-1 負載Au NPs及硫化物QDs於TiO2上之比表面積/孔體積/孔徑分析 93
表4-2 (Z-P)0.2/2A/T 在120 ℃~180 ℃水熱溫度下所得材料之比表面積/孔體積/孔徑分析 94
表4-3 (Z-P)0.2/2A/T z (z = 120-180)之有無添加甲醇犧牲試劑之比較 101
表4-4 (Z-P)x/2A/T z (x = 0.1、0.2、0.3)之有無添加甲醇犧牲試劑之比較 105

圖目錄

圖2-1 二氧化鈦光催化分解反應器示意圖 6
圖2-2 半導體光觸媒分解水原理 8
圖2-3 半導體光催化分解水產氫機制圖 9
圖2-4 一般常見半導體之能隙圖 11
圖2-5 二氧化鈦之晶型結構:(左)銳鈦礦(中)金紅石(右)板鈦礦 12
圖2-6 二氧化鈦相圖 14
圖2-7 太陽光能量分佈圖譜 17
圖2-8 金屬/TiO2於紫外光照射下之電子轉移示意圖 19
圖2-9 Au NPs於TiO2界面上之震盪(入射光為波長575 nm) 20
圖2-10 Au/TiO2於紫外-可見光下LSPR對光催化影響 21
圖2-11 LSPR強度對光催化效率之關係圖 21
圖2-12 光觸媒摻雜金屬/非金屬元素所形成 23
圖2-13 染料敏化光催化之原理 24
圖2-14 CdS/TiO2共觸媒光催化之原理 26
圖2-15 CdS、TiO2、Pt不同組合之電子轉移示意圖 27
圖2-16 尺寸維度對能量及電子能態密度的變化 33
圖2-17 量子侷限效應-量子點尺寸與能隙關係 37
圖2-18 硫化鉛量子點晶格結構(黑球為鉛原子、白球為硫原子) 38
圖2-19 PbS QDs顆粒尺寸對能隙大小關係圖 39
圖2-20 硫化鉛量子點吸收光譜圖 39
圖2-21 (ZnS-PbS)/Au/TiO2反應機制圖 42
圖3-1 Au/TiO2之製備流程圖 46
圖3-2 (ZnS-PbS)/Au/TiO2之製備流程圖 49
圖3-3 光觸媒產氫之實驗裝置示意圖 52
圖3-4 氫氣檢量線 61
圖4-1 Au/TiO2之TEM影像分析圖:(a)負載2 wt.%之Au/TiO2、(b) Au/TiO2局部放大圖 64
圖4-2 TEM影像分析圖:(a) (Z-P)0.2/2A/T 120之TEM分析、(b) (Z-P)0.2/2A/T 120之EDS 65
圖4-3 (Z-P)0.2/2A/T z (z = 120-180)之SEM影像分析圖:(a,e) 120 ℃、(b,f) 140 ℃、(c,g) 160 ℃、(d,h) 180 ℃ 67
圖4-4 (Z-P)0.2/2A/T 120之元素分佈圖 68
圖4-5 負載不同含量Au NPs於TiO2上之XRD圖 70
圖4-6 (Z-P)0.2/2A/T z (z = 120-180)之XRD圖 72
圖4-7 UV-Vis-NIR吸收光圖譜:(a)負載不同含量Au NPs於TiO2上、(b)負載Au NPs及ZnS-PbS QDs於TiO2 75
圖4-8 (Z-P)x/2A/T z (z = 120-180)之UV-Vis-NIR吸收光圖譜:(a) x = 0.1、(b) x = 0.2、(c) x = 0.3 78
圖4-9 (Z-P)x/2A/T z (z = 120-180)之Tauc圖:(a) x = 0.1、(b) x = 0.2、(c) x = 0.3 82
圖4-10 PL:(a)負載不同含量Au NPs於TiO2上、(b)負載Au NPs及ZnS-PbS QDs於TiO2上 85
圖4-11 (Z-P)x/2A/T z (z = 120-180)之PL圖:(a) x = 0.1、(b) x = 0.2、(c) x = 0.3 88
圖4-12等溫吸附曲線/孔徑分佈:(a,b)負載Au NPs及硫化物QDs於TiO2上、(c,d) (Z-P)0.2/2A/T z (z = 120-180) 91
圖4-13 添加20 %甲醇犧牲試劑之產氫曲線及產氫速率:(a,c)負載不同含量Au NPs於TiO2上、(b,d)負載Au NPs及硫化物QDs於TiO2上 99
圖4-14 (Z-P)0.2/2A/T z (z = 120-180)之產氫曲線及產氫速率:(a,b)無添加犧牲試劑、(c,d)添加20%甲醇犧牲試劑 103
圖4-15 (Z-P)x/2A/T 120 (x = 0.1、0.2、0.3)之產氫曲線及產氫速率:(a,c)無添加犧牲試劑、(b,d)添加20%甲醇犧牲試劑 107


[1]S. S. Seyitoglu, I. Dincer, A. Kilicarslan, Energy and exergy analyses of hydrogen production by coal gasification, International Journal of Hydrogen Energy, 42(4), 2592-2600, (2017).
[2]S. Anantharaj, S. R. Ede, K. Sakthikumar, K. Karthick, Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe, Co, and Ni: A review, ACS Catalysis, 6(12), 8069-8097, (2016).
[3]J. Zhang, T. He, Z. Wang, M. Zhu, K. Zhang, B. Li , J. Wu, The search of proper oxygen carriers for chemical looping partial oxidation of carbon, Applied Energy, 190, 1119-1125, (2017).
[4]N. Bidin, S. R. Azni, M. A. Abu Bakar, A. R. Johari, D. H. F. A. , Munap, M. F. Salebi, S. N. A. Razak, N. S. Sahidan, S. N. A Sulaiman, The effect of sunlight in hydrogen production from water electrolysis, International Journal of Hydrogen Energy, 42, 133-142, (2017).
[5]T. J. Jacobsson, Photoelectrochemical water splitting: An idea heading towards obsolescence?, Energy & Environmental Science, 11(8), 1977-1979, (2018).
[6]T. Yao, X. An, H. Han, J. Q. Chen, C. Li, Photoelectrocatalytic materials for solar water splitting, Adv. Energy Mater., 8(21), 1-36, (2018).
[7]A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature, 238(5358), 37-38, (1972).
[8]J. Yu, L. Qi, M. Jaroniec, Hydrogen production by photocatalytic water splitting over Pt/TiO2 nanosheets with exposed (001) facets, The Journal of Phsical Chemistry, 114(30), 13118-13125, (2010).
[9]J. Yu, J. Xiong, B. Cheng, S. Liu, Fabrication and characterization of Ag-TiO2 multiphase nanocomposite thin films with enhanced photocatalytic activity, Applied Catalysis B: Environmental, 60(3-4), 211-221, (2005).
[10]Q. Xiang, J. Yu, M. Jaroniec, Nitrogen and sulfur co-doped TiO2 nanosheets with exposed {001} facets: Synthesis, characterization and visible-light photocatalytic activity, Physical Chemistry Chemical Physics, 13(11), 4853-4861, (2011).
[11]Q. Xiang, J. Yu, W. Wang, M. Jaroniec, Nitrogen self-doped nanosized TiO2 sheets with exposed {0 0 1} facets for enhanced visible-light photocatalytic activity, Chemical Communications, 47(24), 6906-6908, (2011).
[12]A. P. Alivisatos, Semiconductor clusters, nanocrystals, and quantum dots, Science, 16(271), 933-937, (1996).
[13] H. H. Do, D. L. T. Nguyen, X. C. Nguyen, T. H. Le, T. P. Nguyen, Q. T. Trinh, S. H. Ahn, D. N. Vo, S. Y. Kim, Q. V. Le, Recent progress in TiO2-based photocatalysts for hydrogen evolution reaction: A review, Arabian Journal of Chemistry, 2(13), 3653-3671, (2020).
[14]A. Fujishima, N. R. Tata, A. T. Donald, Titanium dioxide photocatalysis, Journal of Photochemistry and Photobiology C: Photochemistry Reviews 1, 1-21, (2000).
[15]Y. Xu, R. Xu, Nickel-based cocatalysts for photocatalytic hydrogen production, Applied Surface Science, 351, 779-793, (2015).
[16]C. Acar, I. Dincer, C. Zamfirescu, A review on selected heterogeneous photocatalysts for hydrogen production, Energy Research, 38(15), 1903-1920, (2014).
[17]M. Gratzel, Photoelectrochemical cells, Nature, 141, 338-344, (2001).
[18]J. L. Murray, Phase diagrams of binary titanium alloys, ASM International, 211-229, (1987).
[19]T. Ohno, K. Sarukawa, K. Tokieda, M. Matsumura, Morphology of a TiO2 Photocatalyst (Degussa, P-25) Consisting of Anatase and Rutile Crystalline Phases., Journal of Catalysis, 203(1), 82-86, (2001).
[20]C. Jia, X. Zhang, K. Matras-Postolek, B. Huang, P. Yang, Z-scheme reduced graphene oxide/TiO2-Bronze/W18O49 ternary heterostructure towards efficient full solar-spectrum photocatalysis, Carbon, 139, 415-426, (2018).
[21]J. J. Velázquez, R. Fernández-González, L. Díaz, E. Pulido Melián, V.D. Rodríguez, P. Núñez, Effect of reaction temperature and sacrificial agent on the photocatalytic H2-production of Pt-TiO2, Journal of Alloy and Compounds, 721, 405-410, (2017).
[22]M. Tahir, N. S. Amin, Advances in visible light responsive titanium oxide-based photocatalysts for CO2 conversion to hydrocarbon fuels, Energy Conversion and Management, 76, 194-214, (2013).
[23]R. A. Rather, S. Singh, B. Pal, Visible and direct sunlight induced H2 production from water by plasmonic Ag-TiO2 nanorods hybrid interface, Solar Energy Materials and Solar Cells, 160, 463-469, (2017).
[24]Z. Lin, X. Wang, J. Lin, Z. Tian, L. Dai, B. He, C. Han, Y. Wu, Z. Zeng, Z. Hu, On the role of localized surface plasmon resonance in UV-Vis light irradiated Au/TiO2 photocatalysis system: pros and cons, Nanoscale, 7(9), 4114-4123, (2015).
[25]G. K. Naik, S. M. Majhi, K-U. Jeong, I-H. Lee, Y. T. Yu, Nitrogen doping on the core-shell structured Au@TiO2 nanoparticles and its enhanced photocatalytic hydrogen evolution under visible light irradiation, Journal of Alloys and Compounds, 711, 505-512, (2019).
[26]F. Wang, T. Shen, Z. Fu, Y. Lu, C. Chen, Enhanced photocatalytic water-splitting performance using Fe-doped hierarchical TiO2 ball-flowers, Nanotechnology, 29(3), 035702, (2018).
[27]R. Saravanan, D. Manoj, J. Qin, M. Naushad, F. Gracia, A. F. Lee, M. M. Khan, M. A. Gracia-Pinilla, Mechanothermal synthesis of Ag/TiO2 for photocatalytic Methyl Orange degradation and hydrogen production, Process Safety and Environmental Protection, 120, 339-347, (2018).
[28]J. Chen, T. Ding, J. Cai, Y. Wang, M. Wu, H. Zhang, W. Zhao, Y. Tian, X. Wang, X. Li, Synergistic effects of K addition and hydrogenation of TiO2 on photocatalytic hydrogen production under simulated solar light, Applied Surface Science, 453, 101-109, (2018).
[29]O. Elbanna, S. Kim, M. Fujitsuka, T. Majima, TiO2 mesocrystals composited with gold nanorods for highly efficient visible-NIR-photocatalytic hydrogen production, Nano Energy, 35, 1-8, (2017).
[30]Z. Zhu, C. T. Kao, B. H. Tang, W. C. Chang, R. J. Wu, Efficient hydrogen production by photocatalytic water-splitting using Pt-doped TiO2 hollow spheres under visible light, Ceramics International, 42(6), 6749-6754, (2016).
[31]X. Chen, S. Shen, L. Guo, S. S. Mao, Semiconductor-based photocatalytic hydrogen generation, Chemical Reviews, 110(11), 6503-6570, (2010).
[32]R. Nakamura, T. Tanaka, Y. Nakato, Mechanism for visible light responses in anodic photocurrents at N-doped TiO2 film electrodes, The Journal of Physical Chemistry B, 108(30), 10617-10620, (2004).
[33]K. B. Dhanalakshmi, S. Latha, S. Anandan, P. Maruthamuthu, Dye sensitized hydrogen evolution from water, International Journal of Hydrogen Energy, 26(7), 669-674, (2001).
[34]Q. Yu, J. Xu, W. Wang, C. Lu, Facile preparation and improved photocatalytic H2-production of Pt-decorated CdS/TiO2 nanorods, Materials Research Bulletin, 51, 40-43, (2014).
[35]Y. Zhu, Y. Wang, Z. Chen, L. Qin, L. Yang, L. Zhu, P. Tang, T, Gao, Y. Huang, Z. Sha, G. Tang, Visible light induced photocatalysis on CdS quantum dots decorated TiO2 nanotube arrays, Applied Catalysis A: General, 498, 159-166, (2015).
[36]X. Hu, S. Ju, J. Tian, N. Wei, X. Song X. Wang, H. Cui, The selective deposition of MoS2 nanosheets onto (101) facets of TiO2 nanosheets with exposed (001) facets and their enhanced photocatalytic H2 production, Applied Catalysis B: Environmental, 241, 329-337, (2019).
[37]J. Liu, J. Ke, Y. Li, B. Liu, L. Wang. H. Xaio, S. Wang, Co3O4 quantum dots/TiO2 nanobelt hybrids for highly efficient photocatalytic overall water splitting, Applied Catalysis B: Environmental, 236, 396-403, (2018).
[38]L. Le, Y. Wu, Z. Zhongpo, H. Wang, R. Xiong, J. Shi, Cu2O clusters decorated on flower-like TiO2 nanorod array film for enhanced hydrogen production under solar light irradiation, Journal of Photochemistry and Photobiology A: Chemistry, 315, 78-86, (2018).
[39]F. Tian, D. Hou, F. Hu, K. Xie, X. Qiao, D. Li, Pouous TiO2 nanofibers decorated CdS nanoparticles by SILAR method for enhanced visible-light-driven photocatalytic activity, Applied Surface Science, 391, 295-302, (2017).
[40]H. M. El-Bery, Y. Matsushita, A. Abdel-moneim, Fabrication of efficient TiO2-RGO heterojunction composites for hydrogen generation via water-splitting: Comparison between RGO, Au and Pt reduction sites, Applied Surface Science, 423, 158-196, (2017).
[41]S. Fujita, H. Kawamori, D. Honda, H. Yoshida, M. Arai, Photocatalytic hydrogen production from aqueous glycerol solution using NiO/TiO2 catalysts: Effects of preparation and reaction conditions, Applied Catalysis B: Environmental, 181, 818-824, (2016).
[42]H. Park, W. Choi, M. R. Hoffmann, Effects of the preparation method of the ternary CdS/TiO2/Pt hybrid photocatalysts on visible light-induced hydrogen production, Journal of Materials, 18(20), 2379-2385, (2008).
[43]G. K. Naik, S. M. Najhi, K-U. Jeong, I-H. Lee, Y. T. Yu, Nitrogen doping on the core-shell structured Au@TiO2 nanoparticles and its enhanced photocatalytic hydrogen evolution under visible light irradiation, Journal of Alloys and Compounds, 771, 505-512, (2019).
[44]J. Du, H. Wang, M. Yang, F. Zhang, H. Wu, X. Cheng, S. Yuan, B. Zhang, K. Li, Y. Wang, H. Lee, Highly efficient hydrogen evolution catalysis based on MoS2/CdS/TiO2 porous composites, International Journal of Hydrogen Energy, 43(19), 9307-9315, (2018).
[45]C. Peng, P. Wei, X. Li, Y. Liu, Y. Cao, H. Wang, H. Yu, F. Peng, L. Zhang, B. Zhang, K. Lv, High efficiency photocatalytic hydrogen production over ternary Cu/TiO2@Ti3C2Tx enabled by low-work-function 2D titanium carbide, Nano Energy, 53, 97-107, (2018).
[46]M. Y. Xie, K. Y. Su, X. Y. Peng, R. J. Wu, M. Chavali, W. C. Chang, Hydrogen production by photocatalytic water-splitting on Pt-doped TiO2-ZnO under visible light, Journal of the Taiwan Institute of Chemical Engineers, 70, 161-167, (2017).
[47]B. Cao, G. Li, H. Li, Hollow spherical RuO2@TiO2@Pt bifunctional photocatalyst for coupled H2 production and pollutant degradation, Applied Catalysis B: Environmental, 194, 42-49, (2016).
[48]S. Oros-Ruiz, R. Zanella, S. E. Collins, A. Hernández-Gordillo, R. Gómez, Photocatalytic hydrogen production by Au-MxOy (M=Ag, Cu, Ni) catalysts supported on TiO2, Catalysis Communications, 47, 1-6, (2014).
[49]A. Galińska, J. Walendziewski, Photocatalytic water splitting over Pt-TiO2 in the presence of sacrificial reagents, Energy & Fuels, 19(3), 1143-1147, (2005).
[50]M. Bowker, C. Morton, J. Kennedy, H. Bahruji, J. Greves, W. Jones, P. R. Davies, C. Brookes, P. P. Wells, N. Dimitratos, Hydrogen production by photoreforming of biofuels using Au, Pd and Au-Pd/TiO2 photocatalysts, Journal of Catalysis, 310, 10-15, (2014).
[51]J. Wang, P. Yang, B. Cao, J. Zhao, Z. Zhu, Photocatalytic carbon-carbon bond formation with concurrent hydrogen evolution on the Pt/TiO2 nanotube, Applied Surface Science, 325, 86-90, (2015).
[52]A. P. Alivisatos, Perspectives on the physical chemistry of semiconductor nanocrystals, The Journal of Physical Chemistry, 100(31), 13226-13239, (1996).
[53]B. Bajorowicz, M. P. Kobylański, A. Gołąbiewska, J. Nadolna, A. Zaleska-Medynska, A. Malankowska, Quantum dot-decorated semiconductor micro-and nanoparticles: A review of their synthesis, characterization and application in photocatalysis, Advances in Colloid and Interface Science, 256, 352-372, (2018).
[54]S. Wu, H. Zeng, Z. A. Schelly, Preparation of ultrasmall, uncapped PbS quantum dots via electroporation of vesicles, Langmuir, 21(2), 686-691, (2005).
[55]C. Wang, R. L. Thompson, P. Ohodnicki, J. Baltrus, C. Matranga, Size-dependent photocatalytic reduction of CO2 with PbS quantum dot sensitized TiO2 heterostructured photocatalysts, Journal of Materials Chemistry, 21(35), 13452-13457, (2011).
[56]A. Guchhait, A. K. Rath, A. J. Pal, To make polymer: Quantum dot hybrid solar cells NIR-active by increasing diameter of PbSnanoparticles, Solar Energy Materials and Solar Cells, 95(2), 651-656, (2011).
[57]D. Ayodhya, G. Veerabhadram, A review on recent advances in photodegradation of dyes using doped and heterojunction based semiconductor metal sulfide nanostructures for environmental protection, Materials Today Energy, 9, 83-113, (2018).
[58]G. L. Lee, J. J. Wu, Recent developments in ZnS photocatalysts from synthesis to photocatalytic applications-A review, Powder Technology, 318, 8-22, (2017).
[59]T. S. Bhat, S. S. Mali, A. D. Sheikh, S. D. Korade, K. K. Pawar, C. K. Hong, J. H. Kim d, P. S. Patil, TiO2/PbS/ZnS heterostructure for panchromatic quantum dot sensitized solar cells synthesized by wet chemical route, Optical Materials, 73, 781-792, (2017).
[60]Z. Wang, H. Zhang, C. Hongwei, L. Wang, Z. Wan, Y. Hao, X. Wang, Facile preparation of ZnS/CdS core/shell nanotubes and their enhanced photocatalytic performance, International Journal of Hydrogen Energy, 42(27), 17394-17402, (2017).
[61]M. Wei, Y. Hong, D. Han, L. Yang, H. Liu, L. Su, One-step hydrothermal synthesis of ZnS quantum dots-reduced graphene oxide composites with enhanced photocatalytic activity. Physica Status Solidi (a), 215(13), 1800082, (2018).
[62]W. Li, R. Liang, A. Hu, Z. Huang, Y. N. Zhou, Generation of oxygen vacancies in visible light activated one-dimensional iodine TiO2 photocatalysts, RSC Adv, 4(70), 36959-36966, (2014).
[63]J. F. Méndez, A. González-Millán, J. A. García-Macedo, A new insight into Au/TiO2-catalyzed hydrogen production from water-methanol mixture using lamps containing simultaneous ultraviolet and visible radiation, International Journal of Hydrogen Energy, 44, 14945-14954, (2019).
[64]B. Liu, X. Zhao, Q. Zhao, X. He, J. Feng, Effect of heat treatment on the UV-Vis-NIR and PL spectra of TiO2 films, Journal of Electron Spectroscopy and Related Phenomena, 143(3), 158-163, (2005).
[65]S. R. Munishwar, P. P. Pawar, S. Ughade, R. S. Gedam, Size dependent effect of electron-hole recombination of CdS quantum dots on emission of Dy3+ ions in boro-silicate glasses through energy transfer, Journal of Alloys and Compounds, 725, 115-122, (2017).

電子全文 電子全文(網際網路公開日期:20250621)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊