跳到主要內容

臺灣博碩士論文加值系統

(44.221.73.157) 您好!臺灣時間:2024/06/23 00:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:辛偉成
研究生(外文):XIN, WEI-CHENG
論文名稱:十二烷基硫酸鈉界面活性劑對合成中孔二氧化鈦及其光催化降解廢水處理的影響
論文名稱(外文):The Effect of Sodium Dodecyl Sulfate Surfactant on Synthesizing Mesoporous TiO2 and its Photocatalytic Wastewater Treatment
指導教授:黃朝偉黃朝偉引用關係
指導教授(外文):HUANG, CHAO-WEI
口試委員:黃朝偉李約亨陳冠邦林怡君
口試委員(外文):HUANG, CHAO-WEILI, YUE-HENGCHEN, GUAN-BANGLIN, YI-JUN
口試日期:2020-07-07
學位類別:碩士
校院名稱:國立高雄科技大學
系所名稱:化學工程與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:89
中文關鍵詞:二氧化鈦光催化降解十二烷基硫酸鈉
外文關鍵詞:titanium dioxide (TiO2)photocatalytic degradationsodium dodecyl sulfate
相關次數:
  • 被引用被引用:0
  • 點閱點閱:118
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
目錄:
摘要 I
Abstract II
誌謝 III
目錄: IV
表目錄 VII
圖目錄 VIII
第壹章緒論 1
第貳章文獻回顧 3
一、光催化降解有機汙染物 3
(一)汙染物的排放 3
(二)光催化反應機制 4
二、二氧化鈦 5
(一)二氧化鈦簡介 5
(二)溶劑熱法介紹 5
三、界面活性劑輔助合成孔洞二氧化鈦 6
(一)孔洞合成機制 6
(二)影響表面特徵及光催化效率之因素 7
四、陰陽離子界面活性劑之混合 16
五、表面鹼處理 17
第參章實驗方法 19
一、實驗藥品與儀器設備 19
(一)藥品 19
(二)器材 20
(三)分析儀器 20
二、光觸媒之溶劑熱法製備 21
(一)不同pH值下的製備 22
(二)不同SDS添加量的製備 22
(三)不同混合界面活性劑添加量的製備 23
(四)S20-pH4不同濃度表面鹼處理的製備 23
三、光催化試驗 24
(一)汙染物濃度的測定 24
(二)汙染物的光催化降解實驗 25
四、儀器原理與操作方法介紹 27
(一) X光繞射儀(XRD,X-ray diffractometer) 27
(二)紫外光可見光光譜儀(UV-vis,UV-visible spectrometer) 29
(三)場發式掃描電子顯微鏡(FE-SEM,field emission scanning electron microscope) 31
(四)比表面積分析儀(BET,specifics surface area analyzer) 32
(五)傅立葉轉換紅外光譜儀(FTIR,fourier-transform infrared spectroscopy) 34
第肆章材料特性檢測結果 35
一、XRD 35
(一)不同pH值製備的樣品 35
(二)不同SDS添加量製備的樣品 36
(三)不同混合界面活性劑添加量製備的樣品 39
(四)S20-pH4不同濃度的表面鹼處理樣品 41
二、FTIR 43
(一)不同pH值製備的樣品 43
(二)不同SDS添加量製備的樣品 45
(三)不同混合界面活性劑添加量製備的樣品 46
(四)S20-pH4不同濃度的表面鹼處理樣品 48
三、SEM 50
(一)不同pH值製備的樣品 50
(二)不同SDS添加量製備的樣品 51
(三)不同混合界面活性劑添加量製備的樣品 52
(四)S20-pH4不同濃度的表面鹼處理樣品 54
四、UV-Vis 55
(一)不同pH值製備的樣品 55
(二)不同SDS添加量製備的樣品 56
(三)不同混合界面活性劑添加量製備的樣品 57
(四)S20-pH4不同濃度的表面鹼處理樣品 58
五、氮氣吸脫附曲線圖 59
(一)不同pH值製備的樣品 59
(二)不同SDS添加量製備的樣品 61
(三)不同混合界面活性劑添加量製備的樣品 63
(四)S20-pH4不同濃度的表面鹼處理樣品 65
第伍章效率檢測結果與探討 68
一、光觸媒降解亞甲基藍(MB) 68
(一)不同pH值製備的樣品 68
(二)不同SDS添加量製備的樣品 69
(三)不同混合界面活性劑添加量製備的樣品 70
(四)S20-pH4不同濃度的表面鹼處理樣品 71
第陸章結論 72
參考資料: 73
個人小傳 77


1.Byrne, C., G. Subramanian, and S.C. Pillai, Recent advances in photocatalysis for environmental applications. Journal of Environmental Chemical Engineering, 2018. 6(3): p. 3531-3555.
2.Natarajan, S., H.C. Bajaj, and R.J. Tayade, Recent advances based on the synergetic effect of adsorption for removal of dyes from waste water using photocatalytic process. Journal of Environmental Sciences, 2018. 65: p. 201-222.
3.Liang, Q., et al., Surfactant-assisted synthesis of photocatalysts: mechanism, synthesis, recent advances and environmental application. Chemical Engineering Journal, 2019.
4.Dong, H., et al., An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures. Water research, 2015. 79: p. 128-146.
5.Tang, L., et al., Enhanced photocatalytic activity of ternary Ag/g-C3N4/NaTaO3 photocatalysts under wide spectrum light radiation: the high potential band protection mechanism. Applied Catalysis B: Environmental, 2018. 230: p. 102-114.
6.Lakshmana Reddy, N., et al., Photocatalytic Reforming of Biomass Derived Crude Glycerol in Water: A Sustainable Approach for Improved Hydrogen Generation Using Ni(OH)2 Decorated TiO2 Nanotubes under Solar Light Irradiation. ACS Sustain. Chem. Eng., 2018. 6(3): p. 3754-3764.
7.Praveen Kumar, D., et al., Cu2O-sensitized TiO2 nanorods with nanocavities for highly efficient photocatalytic hydrogen production under solar irradiation. Sol. Energy Mater. Sol. Cells, 2015. 136: p. 157-166.
8.Xu, F., et al., Direct Z-Scheme TiO2/NiS Core–Shell Hybrid Nanofibers with Enhanced Photocatalytic H2-Production Activity. ACS Sustain. Chem. Eng., 2018. 6(9): p. 12291-12298.
9.Xin, Y., et al., Novel NiS cocatalyst decorating ultrathin 2D TiO2 nanosheets with enhanced photocatalytic hydrogen evolution activity. Mater. Res. Bull., 2017. 87: p. 123-129.
10.Puskelova, J., et al., Photocatalytic hydrogen production using TiO2–Pt aerogels. Chemical Engineering Journal, 2014. 242: p. 96-101.
11.Rana, R.K., Y. Mastai, and A. Gedanken, Acoustic cavitation leading to the morphosynthesis of mesoporous silica vesicles. Advanced Materials, 2002. 14(19): p. 1414-1418.
12.Li, H., et al., Titanium phosphonate based metal–organic frameworks with hierarchical porosity for enhanced photocatalytic hydrogen evolution. Angewandte Chemie International Edition, 2018. 57(12): p. 3222-3227.
13.Aghasiloo, P., et al., Highly porous TiO2 nanofibers by humid-electrospinning with enhanced photocatalytic properties. Journal of Alloys and Compounds, 2019. 790: p. 257-265.
14.Wang, J., et al., Mesoporous yolk–shell SnS 2–TiO 2 visible photocatalysts with enhanced activity and durability in Cr (vi) reduction. Nanoscale, 2013. 5(5): p. 1876-1881.
15.Bakshi, M.S., How surfactants control crystal growth of nanomaterials. Crystal Growth & Design, 2015. 16(2): p. 1104-1133.
16.Kachbouri, S., E. Elaloui, and Y. Moussaoui, The Effect of Surfactant Chain Length and Type on the Photocatalytic Activity of Mesoporous TiO2 Nanoparticles Obtained via Modified Sol-Gel Process. Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 2019. 38(1): p. 17-26.
17.Mamaghani, A.H., F. Haghighat, and C.-S. Lee, Systematic variation of preparation time, temperature, and pressure in hydrothermal synthesis of macro-/mesoporous TiO2 for photocatalytic air treatment. Journal of Photochemistry and Photobiology A: Chemistry, 2019. 378: p. 156-170.
18.Mamaghani, A.H., F. Haghighat, and C.-S. Lee, Hydrothermal/solvothermal synthesis and treatment of TiO2 for photocatalytic degradation of air pollutants: Preparation, characterization, properties, and performance. Chemosphere, 2019. 219: p. 804-825.
19.Mitra, A., A. Bhaumik, and B.K. Paul, Synthesis and characterization of mesoporous titanium dioxide using self-assembly of sodium dodecyl sulfate and benzyl alcohol systems as templates. Microporous and Mesoporous Materials, 2008. 109(1-3): p. 66-72.
20.Sun, B., et al., Spherical mesoporous TiO2 fabricated by sodium dodecyl sulfate-assisted hydrothermal treatment and its photocatalytic decomposition of papermaking wastewater. Powder Technology, 2014. 256: p. 118-125.
21.Fernández, I.E. and J. Rodríguez-Páez, Wet-chemical preparation of TiO2-nanostructures using different solvents: Effect of CTAB concentration and tentative mechanism of particle formation. Journal of Alloys and Compounds, 2019. 780: p. 756-771.
22.Mashkoor, F. and A. Nasar, Magsorbents: Potential candidates in wastewater treatment technology–A review on the removal of methylene blue dye. Journal of Magnetism and Magnetic Materials, 2020: p. 166408.
23.Abou-Gamra, Z. and M. Ahmed, Synthesis of mesoporous TiO2–curcumin nanoparticles for photocatalytic degradation of methylene blue dye. Journal of Photochemistry and Photobiology B: Biology, 2016. 160: p. 134-141.
24.Hirakawa, T., et al., An approach to elucidating photocatalytic reaction mechanisms by monitoring dissolved oxygen: Effect of H2O2 on photocatalysis. Applied Catalysis B: Environmental, 2009. 87(1-2): p. 46-55.
25.Xiao, X., et al., Discussion on the reaction mechanism of the photocatalytic degradation of organic contaminants from a viewpoint of semiconductor photo-induced electrocatalysis. Applied Catalysis B: Environmental, 2016. 198: p. 124-132.
26.Akpan, U.G. and B.H. Hameed, Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: a review. Journal of hazardous materials, 2009. 170(2-3): p. 520-529.
27.Zangeneh, H., et al., Photocatalytic oxidation of organic dyes and pollutants in wastewater using different modified titanium dioxides: A comparative review. Journal of Industrial and Engineering Chemistry, 2015. 26: p. 1-36.
28.Friedmann, D., C. Mendive, and D. Bahnemann, TiO2 for water treatment: parameters affecting the kinetics and mechanisms of photocatalysis. Applied Catalysis B: Environmental, 2010. 99(3-4): p. 398-406.
29.Zhang, X., et al., Heterostructures construction on TiO2 nanobelts: A powerful tool for building high-performance photocatalysts. Applied Catalysis B: Environmental, 2017. 202: p. 620-641.
30.Atkin, R., et al., Mechanism of cationic surfactant adsorption at the solid–aqueous interface. Advances in colloid and interface science, 2003. 103(3): p. 219-304.
31.Yuenyongsuwan, J., et al., Surfactant effect on phase-controlled synthesis and photocatalyst property of TiO2 nanoparticles. Materials Chemistry and Physics, 2018. 214: p. 330-336.
32.Paschalidou, P. and C.R. Theocharis, Tuning the porosity and surface characteristics of nanoporous titania using non-ionic surfactant reverse micelles. RSC Advances, 2018. 8(52): p. 29890-29898.
33.Estrada-Flores, S., et al., Relationship between morphology, porosity, and the photocatalytic activity of TiO2 obtained by sol–gel method assisted with ionic and nonionic surfactants. Boletín de la Sociedad Española de Cerámica y Vidrio, 2019.
34.Mahbub, S., et al., Conductometric and molecular dynamics studies of the aggregation behavior of sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB) in aqueous and electrolytes solution. Journal of Molecular Liquids, 2019. 283: p. 263-275.
35.Mal, A., et al., Physicochemistry of CTAB-SDS interacted catanionic micelle-vesicle forming system: An extended exploration. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018. 553: p. 633-644.
36.Xiao, W., F. Wang, and G. Xiao, Performance of hierarchical HZSM-5 zeolites prepared by NaOH treatments in the aromatization of glycerol. Rsc Advances, 2015. 5(78): p. 63697-63704.
37.Estrada-Flores, S., et al., Revista Internacional de Investigación e Innovación Tecnológica.
38.Kudo, A. and Y. Miseki, Heterogeneous photocatalyst materials for water splitting. Chemical Society Reviews, 2009. 38(1): p. 253-278.
39.Whittig, L.J.M.o.S.A.P.P., I.S.o.M. Mineralogical Properties, and Sampling, X‐ray diffraction techniques for mineral identification and mineralogical composition. 1965. 9: p. 671-698.
40.Kudo, A. and Y.J.C.S.R. Miseki, Heterogeneous photocatalyst materials for water splitting. 2009. 38(1): p. 253-278.
41.Hoffmann, M.R., et al., Environmental applications of semiconductor photocatalysis. 1995. 95(1): p. 69-96.
42.Tauc, J., R. Grigorovici, and A.J.p.s.s. Vancu, Optical properties and electronic structure of amorphous germanium. 1966. 15(2): p. 627-637.
43.Davis, E. and N.J.P.M. Mott, Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. 1970. 22(179): p. 0903-0922.
44.Smith, B.C., Fundamentals of Fourier transform infrared spectroscopy. 2011: CRC press.
45.Murphy, A.J.S.E.M. and S. Cells, Band-gap determination from diffuse reflectance measurements of semiconductor films, and application to photoelectrochemical water-splitting. 2007. 91(14): p. 1326-1337.


電子全文 電子全文(網際網路公開日期:20250817)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊