(3.237.97.64) 您好!臺灣時間:2021/03/04 14:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃偉銘
研究生(外文):HUANG, WEI-MING
論文名稱:光固化聚胺酯丙烯酸酯樹脂組成於積層製造之特性研究
論文名稱(外文):Study on Properties of Polyurethane-Acrylate UV-curable Resin Composition for Additive Manufacturing
指導教授:顏福杉
指導教授(外文):YEN, FU-SAN
口試委員:吳進三何宗漢施希弦
口試委員(外文):WU,JIN-SANHO,TSUNG-HANSHIH,HSI-HSIN
口試日期:2020-07-26
學位類別:碩士
校院名稱:國立高雄科技大學
系所名稱:化學工程與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:128
中文關鍵詞:積層製造光固化機械性質聚胺酯丙烯酸酯
外文關鍵詞:3D-printpolyurethane-acrylateUV-curablemechanical properties
相關次數:
  • 被引用被引用:0
  • 點閱點閱:27
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用IPDI、PEG200、HEA合成聚胺酯二丙烯酸酯(PUDA)寡聚物,並加入反應性稀釋單體與光起始劑形成光固化基礎樹脂組成(CRCB);再分別添加TMPTA、TiO2、BBOT形成修飾樹脂組成(MCRCs)。探討所合成的PUDA,搭配工業用單體所配製的3D列印光固化樹脂組成,在光固化積層製造中的適用性。
實驗中先行量測CRCB與MCRCs溶液的黏度以了解其流動行為,然後分別以3D列印方式進行光固化製程,並探討與比較CRC與MCRCs的多種特性,包括機械性質、凝膠含量、溶劑吸收量、Jacobs工作曲線、尺寸精度、後固化的光線穿透、及翹曲。
結果顯示此二類型的流體(CRCB與MCRCs)在低流動速率時均表現類牛頓流體的流動行為。而在光固化程序中(每層20秒的曝光時間下)TiO2的添加,可改善Z軸尺寸偏差及翹曲程度;然而,導致較低的凝膠含量而造成拉伸強度下降,並降低後固化時的光線穿透能力。同樣地,BBOT的添加能改善Z軸尺寸偏差,由於其405 nm的吸收能力會導致力學性質的降低、並引致更大的翹曲。然而添加TMPTA可使拉伸強度增強及提升凝膠含量;但越多的添加量,使材料變脆、強度變弱,及斷裂伸長率及韌性的降低。
經由上述的各項評估,本研究所合成的PUDA寡聚合物具有較窄的分子量分佈、合理的黏度與流動性、TiO2的濕潤性、單体的互溶性,顯示經由適當的調整,可將其作為3D積層製造光固化樹脂使用。
In this study, a polyurethane diacrylate (PUDA) oligomer was synthesized with IPDI, PEG200, and HEA, to evaluate the applicability as a 3D printing resin. The PUDA, selected monomers and photoinitiators were mixed to form a curable resin composition base (CRCB); then the TMPTA, TiO2, and BBOT were individually added into CRCB to form modified curable resin compositions (MCRCs).
In the experiment, the viscosity of CRCB and MCRCs were measured to describe their flow behavior, then sent into the Phrozen printer to perform the 3D-printing, respectively. Various characteristics of CRCB and MCRCs, including mechanical properties, gel content, and solvent absorption, Jacobs working curve, dimensional accuracy, post-curing light penetration, and warpage, were measured.
After experiments, results show below. Both types of solution of CRCB and MCRCs show an approximate Newtonian flow at a low flow rate. Under an exposure time of 20 seconds per layer, the energy dosage is about 0.256 mJ/cm2, and all of these specimen of thin and thick can be cured. The addition of TiO2 lowers the Z-dimensional deviation and shape warpage, but causes lower gel content which weakens the tensile strength, and reduces light penetration during post-curing. Similarly, the BBOT can improve the Z-dimensional stability, but reduce the mechanical properties and increase the warpage, due to its 405 nm absorption capacity. And, the TMPTA can increase the tensile strength and the gel content, however, excess addition of this makes the cured material brittle, weaker in tensile strength, inferior in elongation and toughness.
After these characterizations mentioned-above, the synthesized PUDA oligomer with a narrow molecular weight disperse, shows a reasonable viscosity and flow-ability, TiO2 wetting, and compatibility with industrial monomers used in this research, and indicates that it can be used in 3D-printing application.

摘要 I
ABSTRACT II
致謝 IV
目錄 V
表目錄 IX
圖目錄 XI
第一章 緒論 1
1-1 前言 1
1-2 動機與目的 2
第二章 原理及文獻回顧 3
2-1 光固化積層製造技術 3
2-1-1 積層製造技術(3D列印) 3
2-1-2 光固化積層製造簡介 6
2-1-3 Top Down and Bottom UP 6
2-1-4 光固化積層製造的方法種類 8
2-1-5 光固化積層製造流程 10
2-2 紫外線硬化技術 14
2-2-1 光敏性樹脂組成 14
2-2-2 自由基聚合反應 14
2-2-3 自由基光起始劑 15
2-2-4 寡聚物 16
2-2-5 反應性單體 16
2-2-6 紫外線吸收劑 17
2-2-7 分子量大小 17
2-2-8 聚合物鏈段 18
2-2-9 官能基數量與交聯密度 19
2-3 光固化3D列印的固化行為 21
2-3-1 黏度 21
2-3-2 Jacob’s working curve 及樹脂固化後的型態 23
2-3-3 層與層間的固化行為 26
2-3-4 Over-curing/back-side effect 27
2-3-5 列印方向的各向異性 30
第三章 實驗方法 32
3-1 實驗藥品及儀器 32
3-1-1 藥品 32
3-1-2 實驗儀器與設備 34
3-2 寡聚物及命名 36
3-2-1 寡聚物合成 36
3-2-2 光固化樹脂的配製與命名 38
3-3 實驗方法 39
3-3-1 黏度 39
3-3-2 工作曲線(Working curve) 40
3-3-3 翹曲(Warpage) 41
3-3-4 凝膠含量(Gel content) 41
3-3-5 溶劑吸收率(Solvent absorption) 41
3-3-6 二次固化深度實驗 41
3-3-7 拉伸試驗(Tensile test) 42
3-3-8 固體顆粒UV-Vis吸收率與反射率量測 43
3-3-9 列印方向拉伸強度 43
第四章 結果與討論 44
4-1 寡聚物結構鑒定及配方的混合 44
4-1-1 GPC分子量鑑定 44
4-1-2 結構鑒定 45
4-1-3 光固化樹脂組成(配方)配製與其特徵分析 48
4-2 黏度 50
4-2-1 TiO2添加 50
4-2-2 TMPTA添加 51
4-2-3 不同寡聚物 54
4-3 工作曲線(working curves) 55
4-3-1 TiO2添加 55
4-3-2 TMPTA添加 59
4-3-3 不同寡聚物 62
4-3-4 不同起始劑及紫外線吸收劑BBOT添加 63
4-4 二次固化穿透深度 66
4-4-1 TiO2添加 66
4-4-2 TMPTA添加變化 67
4-4-3 不同起始劑 68
4-5 翹曲(Warpage) 69
4-5-1 添加TiO2的翹曲程度 69
4-5-2 添加TMPTA的翹曲程度 70
4-5-3 不同寡聚物的翹曲程度 72
4-5-4 添加紫外線吸收劑的翹曲程度 73
4-6 溶劑吸收率(Solvent absorption) 74
4-6-1 TMPTA添加 74
4-6-2 TiO2添加 77
4-6-3 不同寡聚物 78
4-6-4 紫外線吸收劑 80
4-7 凝膠含量(Gel Content) 83
4-7-1 TMPTA添加 83
4-7-2 TiO2添加 85
4-7-3 不同寡聚物 86
4-7-4 紫外線吸收劑 87
4-8 背側效應(Back side effect) 88
4-8-1 TiO2與TMPTA 88
4-8-2 紫外線吸收劑的添加 90
4-9 拉伸試驗 91
4-9-1 橫向試片及縱向試片 91
4-9-2 P2IHn3-TPO-TiO2 93
4-9-3 P2IHn3-TPO-TMPTA 94
4-9-4 B85-I819-TMPTA 97
4-9-5 紫外線吸收劑 101
4-9-6 不同光起始劑 102
4-9-7 不同官能基寡聚物 103
第五章 結論 104
參考文獻 105
附錄 112

1.I. Gibson, et al., Additive Manufacturing Technologies, Springer, 375-397, 2015.
2.江瑞璋, et al., 創客與產業應用, 印刷科技, 22-50, 2015.
3.杜喻婕, et al., 3D 列印輔助高齡者穿鞋需求設計之研究, 華岡紡織期刊, 24, 222-230, 2017.
4.楊惠茹, 3D Texture鞋材生產製程之快速替換式模具探討, 碩士論文, 東海大學, 113, 2018.
5.K. Johnson, et al., Digital Manufacturing of Pathologically-Complex 3D Printed Antennas, IEEE Access, 7, 39378-39389, 2019.
6.A. Naderi, et al., Digital Manufacturing for Microfluidics. Annual Review of Biomedical Engineering, 21(1), 325-364, 2019.
7.J. Hong, et al., Plasma-digital nexus: plasma nanotechnology for the digital manufacturing age, Reviews of Modern Plasma Physics, 4(1), 1, 2020.
8.丁于珊, 直接製造解放工業無限潛能, CTIMES, 三月號, 40-45, 2014.
9.S. J. Leigh, et al., A simple, low-cost conductive composite material for 3D printing of electronic sensors, PloS one, 7(11), 2012.
10.C. Mahajan, et al. 3D printing of carbon fiber composites with preferentially aligned fibers, in IIE annual conference, 2015.
11.S. C. Ligon, et al., Polymers for 3D Printing and Customized Additive Manufacturing, Chemical Reviews, 117(15), 10212-10290, 2017.
12.T. Ito, et al., EP1,757,979A1, Rapid prototyping resin compositions, 2012.
13.E. Fantino, et al., 3D Printing of Conductive Complex Structures with In Situ Generation of Silver Nanoparticles, Advanced Materials, 28(19), 3712-3717, 2016.
14.J. W. Halloran, Ceramic Stereolithography: Additive Manufacturing for Ceramics by Photopolymerization, Annual Review of Materials Research, 46(1), 19-40, 2016.
15.陳旻宏, 紫外光固化之透明高分子封裝薄膜之平坦化研究, 碩士論文, 國立臺北科技大學, 105, 2019.
16.劉乃慧, 快速成型光固化水溶性材料的開發, 碩士論文, 國立臺灣科技大學, 131, 2019.
17.蔡明展, 低收縮率之光固化 3D 列印樹脂之製備及性質, 碩士論文, 國立臺北科技大學, 79, 2018.
18.李紋瑩, 光固化聚胺酯丙烯酸酯樹酯之研發, 碩士論文, 國立交通大學, 48, 2019.
19.簡勝彥, 光固化聚胺酯丙烯酸酯之合成與特性探討, 碩士論文, 國立勤益科技大學, 98, 2019.
20.邱旻慧, 分析三維列印光固化樹脂之組成與化學結構的影響, 碩士論文, 國立臺灣科技大學, 174, 2017.
21.李怡良, 紫外光固化聚胺酯-丙烯酸酯 塗料表面性質探討, 碩士論文, 國立臺北科技大學, 51, 2018.
22.鄭育承, 乙基咔唑硫雜蔥酮可見光起始劑於光固化系統之應用, 碩士論文, 國立臺灣科技大學, 98, 2015.
23.廖心妤, 改質水性聚胺酯與甲基纖維素混摻作為3D列印用生醫材料之探討, 碩士論文, 國立聯合大學, 72, 2018.
24.H. Xiang, et al., Effect of soft chain length and generation number on properties of flexible hyperbranched polyurethane acrylate and its UV-cured film, Progress in Organic Coatings, 114, 216-222, 2018.
25.M. Ahmad, et al., High Performance Shape Memory Polyurethane Synthesized with High Molecular Weight Polyol as the Soft Segment, Applied Sciences, 2(2), 535-548, 2012.
26.S. Ghosh, et al., Preparation and properties of UV-curable polyurethane methacrylate cationomers and their use as adhesives, Polymer-Plastics Technology and Engineering, 40(4), 539-559, 2001.
27.M. Whitaker, The history of 3D printing in healthcare, The Bulletin of the Royal College of Surgeons of England, 96(7), 228-229, 2014.
28.J. W. Stansbury, et al., 3D printing with polymers: Challenges among expanding options and opportunities, Dent Mater, 32(1), 54-64, 2016.
29.T. Suzuki, et al., US5,929130A, Photocurable resin compositions for plastic molds, 1999.
30.D. J. O'sullivan, US4,100,141A, Stabilized adhesive and curing compositions, 1978.
31.B. Steinmann, et al., US 5,476,749, Photosensitive compositions based on acrylates, 1995.
32.T. Hagiwara, et al., US6,162,576, Resin composition for stereolithography, 2000.
33.菅野 真樹, et al., JP 6405721 B2, 光学立体造形用硬化性材料および立体造形物, 2014.
34.J. Vališ, et al., Inhibition of premature polymerization of cationically curable systems by triethanolamine, International symposium on graphic engineering and design, 213-216, 2018.
35.M. P. Stevens, Polymer chemistry an instroduction, International third edition ed.: Oxford, 167-180, 2009.
36.欧晓光, et al., CN 104559140 A, 一种基于3d打印的光固化材料及其制备方法, 2015.
37.陈亮, CN 107880223 B, 一种快速固化、低收缩率的3d打印树脂, 2017.
38.C. J. Chang, et al., Synthesis and properties of UV-curable hyperbranched polymers for ink-jet printing of color micropatterns on glass, Thin Solid Films, 519(15), 5243-5248, 2011.
39.E. Collin, et al., WO 2019/180208 A1, Composition d'impression 3d pour biomatériaux, 2019.
40.B. K. Kim, et al., Structure-property relationship of polyurethane ionomer, Colloid and Polymer Science, 270(10), 956-961, 1992.
41.C. Decker, Photoinitiated crosslinking polymerisation, Progress in Polymer Science, 21(4), 593-650, 1996.
42.K. Moussa, et al., Light-induced polymerization of new highly reactive acrylic monomers, Journal of Polymer Science Part A: Polymer Chemistry, 31(9), 2197-2203, 1993.
43.S. Y. Kwak, et al., Amelioration of mechanical brittleness in hyperbranched polymer. 1. Macroscopic evaluation by dynamic viscoelastic relaxation, Polymer, 45(20), 6889-6896, 2004.
44.W. Q. Xiao, et al., Synthesis of Ultraviolet Curable Hyperbranched Polyurethane Acrylate and Properties of its Cured Films, Journal of Chemical Engineering of Chinese Universities, 23(2), 240-245, 2009.
45.J. Borrello, et al., 3D printing a mechanically-tunable acrylate resin on a commercial DLP-SLA printer, Additive Manufacturing, 23, 374-380, 2018.
46.鄭正元, et al., 3D列印:積層製造技術與應用, 全華圖書, 2017.
47.S. C. Ligon, et al., Polymers for 3D printing and customized additive manufacturing, Chemical reviews, 117(15), 10212-10290, 2017.
48.P. F. Jacobs, Fundamentals of stereolithography, in 1992 International Solid Freeform Fabrication Symposium, 1992.
49.K. Kowsari, et al., Photopolymer formulation to minimize feature size, surface roughness, and stair-stepping in digital light processing-based three-dimensional printing, Additive Manufacturing, 24, 627-638, 2018.
50.J. Bennett, Measuring UV curing parameters of commercial photopolymers used in additive manufacturing, Additive Manufacturing, 18, 203-212, 2017.
51.A. C. Uzcategui, et al., Understanding and Improving Mechanical Properties in 3D printed Parts Using a Dual-Cure Acrylate-Based Resin for Stereolithography, Advanced Engineering Materials, 20(12), 1800876, 2018.
52.H. Gojzewski, et al., Layer-by-Layer Printing of Photopolymers in 3D: How Weak is the Interface, ACS Applied Materials & Interfaces, 12(7), 8908-8914, 2020.
53.A. Urrios, et al., 3D-printing of transparent bio-microfluidic devices in PEG-DA, Lab on a Chip, 16(12), 2287-2294, 2016.
54.P. F. O'Neill, et al. Mitigation and control of the overcuring effect in mask projection micro-stereolithography, in AIP Conference Proceedings, 2017.
55.R. Bail, et al., Effect of a red-shifted benzotriazole UV absorber on curing depth and kinetics in visible light initiated photopolymer resins for 3D printing, Journal of Industrial and Engineering Chemistry, 38, 141-145, 2016.
56.N. Chantarapanich, et al., Study of the mechanical properties of photo-cured epoxy resin fabricated by stereolithography process, Songklanakarin J. Sci. Technol, 35(1), 91-98, 2013.
57.E. Aznarte, et al., Digital light processing (dlp): Anisotropic tensile considerations, in 2017 Annual International Solid Freeform Fabrication Symposium – An Additive Manufacturing Conference, 10-203, 2017.
58.M. Monzón, et al., Anisotropy of Photopolymer Parts Made by Digital Light Processing, Materials (Basel), 10(1), 2017.
59.Brookfield DV-II+ Programmable Viscometer Operating Instructions Manual No. M/97-164-F1102.
60.R. Ghasemi, et al., Effects of TiO2 nanoparticles and oleic acid surfactant on the rheological behavior of engine lubricant oil, Journal of Molecular Liquids, 268, 925-930, 2018.
61.I. Hansenne, US 6146649 A, Photobluing/whitening-resistant cosmetic/dermatological compositions comprising TiO2 pigments and deformable hollow particulates, 1999.
62.C. Chui, US 20080100900 A1, Light guide including optical scattering elements and a method of manufacture, 2011.
63.丁鹏, et al., CN 102634067 A, 光扩散剂、光分散材料及其制备方法, 2012.
64.W. Li, et al. Dielectric Properties and 3D Printing Fesibility of UV Curable Polymer Composites, in 2018 IEEE International Conference on High Voltage Engineering and Application (ICHVE), 2018.
65.M. L. Griffith, et al., Scattering of ultraviolet radiation in turbid suspensions. Journal of Applied Physics, 81(6), 2538-2546, 1997.
66.Z. Chen, et al., Curing characteristics of ceramic stereolithography for an aqueous-based silica suspension. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 224(4), 641-651, 2010.
67.M. G. Neumann, et al., Molar extinction coefficients and the photon absorption efficiency of dental photoinitiators and light curing units, Journal of Dentistry, 33(6), 525-532, 2005.
68.M. G. Neumann, et al., The initiating radical yields and the efficiency of polymerization for various dental photoinitiators excited by different light curing units, Dental Materials, 22(6), 576-584, 2006.
69.V. P. Thompson, et al., Dental Resins with Reduced Shrinkage During Hardening, Journal of Dental Research, 58(5), 1522-1532, 1979.
70.D. Karalekas, et al., Study of shrinkage strains in a stereolithography cured acrylic photopolymer resin, Journal of Materials Processing Technology, 136(1), 146-150, 2003.
71.S. C. Ligon, et al., Strategies to Reduce Oxygen Inhibition in Photoinduced Polymerization, Chemical Reviews, 114(1), 557-589, 2014.
72.S. C. Ligon-Auer, et al., Toughening of photo-curable polymer networks: a review, Polymer Chemistry, 7(2), 257-286, 2016.
73.B. Steyrer, et al., Visible Light Photoinitiator for 3D-Printing of Tough Methacrylate Resins, Materials (Basel), 10(12), 2017.

電子全文 電子全文(網際網路公開日期:20250820)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔