1.I. Gibson, et al., Additive Manufacturing Technologies, Springer, 375-397, 2015.
2.江瑞璋, et al., 創客與產業應用, 印刷科技, 22-50, 2015.
3.杜喻婕, et al., 3D 列印輔助高齡者穿鞋需求設計之研究, 華岡紡織期刊, 24, 222-230, 2017.
4.楊惠茹, 3D Texture鞋材生產製程之快速替換式模具探討, 碩士論文, 東海大學, 113, 2018.5.K. Johnson, et al., Digital Manufacturing of Pathologically-Complex 3D Printed Antennas, IEEE Access, 7, 39378-39389, 2019.
6.A. Naderi, et al., Digital Manufacturing for Microfluidics. Annual Review of Biomedical Engineering, 21(1), 325-364, 2019.
7.J. Hong, et al., Plasma-digital nexus: plasma nanotechnology for the digital manufacturing age, Reviews of Modern Plasma Physics, 4(1), 1, 2020.
8.丁于珊, 直接製造解放工業無限潛能, CTIMES, 三月號, 40-45, 2014.
9.S. J. Leigh, et al., A simple, low-cost conductive composite material for 3D printing of electronic sensors, PloS one, 7(11), 2012.
10.C. Mahajan, et al. 3D printing of carbon fiber composites with preferentially aligned fibers, in IIE annual conference, 2015.
11.S. C. Ligon, et al., Polymers for 3D Printing and Customized Additive Manufacturing, Chemical Reviews, 117(15), 10212-10290, 2017.
12.T. Ito, et al., EP1,757,979A1, Rapid prototyping resin compositions, 2012.
13.E. Fantino, et al., 3D Printing of Conductive Complex Structures with In Situ Generation of Silver Nanoparticles, Advanced Materials, 28(19), 3712-3717, 2016.
14.J. W. Halloran, Ceramic Stereolithography: Additive Manufacturing for Ceramics by Photopolymerization, Annual Review of Materials Research, 46(1), 19-40, 2016.
15.陳旻宏, 紫外光固化之透明高分子封裝薄膜之平坦化研究, 碩士論文, 國立臺北科技大學, 105, 2019.16.劉乃慧, 快速成型光固化水溶性材料的開發, 碩士論文, 國立臺灣科技大學, 131, 2019.17.蔡明展, 低收縮率之光固化 3D 列印樹脂之製備及性質, 碩士論文, 國立臺北科技大學, 79, 2018.18.李紋瑩, 光固化聚胺酯丙烯酸酯樹酯之研發, 碩士論文, 國立交通大學, 48, 2019.19.簡勝彥, 光固化聚胺酯丙烯酸酯之合成與特性探討, 碩士論文, 國立勤益科技大學, 98, 2019.20.邱旻慧, 分析三維列印光固化樹脂之組成與化學結構的影響, 碩士論文, 國立臺灣科技大學, 174, 2017.21.李怡良, 紫外光固化聚胺酯-丙烯酸酯 塗料表面性質探討, 碩士論文, 國立臺北科技大學, 51, 2018.22.鄭育承, 乙基咔唑硫雜蔥酮可見光起始劑於光固化系統之應用, 碩士論文, 國立臺灣科技大學, 98, 2015.23.廖心妤, 改質水性聚胺酯與甲基纖維素混摻作為3D列印用生醫材料之探討, 碩士論文, 國立聯合大學, 72, 2018.24.H. Xiang, et al., Effect of soft chain length and generation number on properties of flexible hyperbranched polyurethane acrylate and its UV-cured film, Progress in Organic Coatings, 114, 216-222, 2018.
25.M. Ahmad, et al., High Performance Shape Memory Polyurethane Synthesized with High Molecular Weight Polyol as the Soft Segment, Applied Sciences, 2(2), 535-548, 2012.
26.S. Ghosh, et al., Preparation and properties of UV-curable polyurethane methacrylate cationomers and their use as adhesives, Polymer-Plastics Technology and Engineering, 40(4), 539-559, 2001.
27.M. Whitaker, The history of 3D printing in healthcare, The Bulletin of the Royal College of Surgeons of England, 96(7), 228-229, 2014.
28.J. W. Stansbury, et al., 3D printing with polymers: Challenges among expanding options and opportunities, Dent Mater, 32(1), 54-64, 2016.
29.T. Suzuki, et al., US5,929130A, Photocurable resin compositions for plastic molds, 1999.
30.D. J. O'sullivan, US4,100,141A, Stabilized adhesive and curing compositions, 1978.
31.B. Steinmann, et al., US 5,476,749, Photosensitive compositions based on acrylates, 1995.
32.T. Hagiwara, et al., US6,162,576, Resin composition for stereolithography, 2000.
33.菅野 真樹, et al., JP 6405721 B2, 光学立体造形用硬化性材料および立体造形物, 2014.
34.J. Vališ, et al., Inhibition of premature polymerization of cationically curable systems by triethanolamine, International symposium on graphic engineering and design, 213-216, 2018.
35.M. P. Stevens, Polymer chemistry an instroduction, International third edition ed.: Oxford, 167-180, 2009.
36.欧晓光, et al., CN 104559140 A, 一种基于3d打印的光固化材料及其制备方法, 2015.
37.陈亮, CN 107880223 B, 一种快速固化、低收缩率的3d打印树脂, 2017.
38.C. J. Chang, et al., Synthesis and properties of UV-curable hyperbranched polymers for ink-jet printing of color micropatterns on glass, Thin Solid Films, 519(15), 5243-5248, 2011.
39.E. Collin, et al., WO 2019/180208 A1, Composition d'impression 3d pour biomatériaux, 2019.
40.B. K. Kim, et al., Structure-property relationship of polyurethane ionomer, Colloid and Polymer Science, 270(10), 956-961, 1992.
41.C. Decker, Photoinitiated crosslinking polymerisation, Progress in Polymer Science, 21(4), 593-650, 1996.
42.K. Moussa, et al., Light-induced polymerization of new highly reactive acrylic monomers, Journal of Polymer Science Part A: Polymer Chemistry, 31(9), 2197-2203, 1993.
43.S. Y. Kwak, et al., Amelioration of mechanical brittleness in hyperbranched polymer. 1. Macroscopic evaluation by dynamic viscoelastic relaxation, Polymer, 45(20), 6889-6896, 2004.
44.W. Q. Xiao, et al., Synthesis of Ultraviolet Curable Hyperbranched Polyurethane Acrylate and Properties of its Cured Films, Journal of Chemical Engineering of Chinese Universities, 23(2), 240-245, 2009.
45.J. Borrello, et al., 3D printing a mechanically-tunable acrylate resin on a commercial DLP-SLA printer, Additive Manufacturing, 23, 374-380, 2018.
46.鄭正元, et al., 3D列印:積層製造技術與應用, 全華圖書, 2017.
47.S. C. Ligon, et al., Polymers for 3D printing and customized additive manufacturing, Chemical reviews, 117(15), 10212-10290, 2017.
48.P. F. Jacobs, Fundamentals of stereolithography, in 1992 International Solid Freeform Fabrication Symposium, 1992.
49.K. Kowsari, et al., Photopolymer formulation to minimize feature size, surface roughness, and stair-stepping in digital light processing-based three-dimensional printing, Additive Manufacturing, 24, 627-638, 2018.
50.J. Bennett, Measuring UV curing parameters of commercial photopolymers used in additive manufacturing, Additive Manufacturing, 18, 203-212, 2017.
51.A. C. Uzcategui, et al., Understanding and Improving Mechanical Properties in 3D printed Parts Using a Dual-Cure Acrylate-Based Resin for Stereolithography, Advanced Engineering Materials, 20(12), 1800876, 2018.
52.H. Gojzewski, et al., Layer-by-Layer Printing of Photopolymers in 3D: How Weak is the Interface, ACS Applied Materials & Interfaces, 12(7), 8908-8914, 2020.
53.A. Urrios, et al., 3D-printing of transparent bio-microfluidic devices in PEG-DA, Lab on a Chip, 16(12), 2287-2294, 2016.
54.P. F. O'Neill, et al. Mitigation and control of the overcuring effect in mask projection micro-stereolithography, in AIP Conference Proceedings, 2017.
55.R. Bail, et al., Effect of a red-shifted benzotriazole UV absorber on curing depth and kinetics in visible light initiated photopolymer resins for 3D printing, Journal of Industrial and Engineering Chemistry, 38, 141-145, 2016.
56.N. Chantarapanich, et al., Study of the mechanical properties of photo-cured epoxy resin fabricated by stereolithography process, Songklanakarin J. Sci. Technol, 35(1), 91-98, 2013.
57.E. Aznarte, et al., Digital light processing (dlp): Anisotropic tensile considerations, in 2017 Annual International Solid Freeform Fabrication Symposium – An Additive Manufacturing Conference, 10-203, 2017.
58.M. Monzón, et al., Anisotropy of Photopolymer Parts Made by Digital Light Processing, Materials (Basel), 10(1), 2017.
59.Brookfield DV-II+ Programmable Viscometer Operating Instructions Manual No. M/97-164-F1102.
60.R. Ghasemi, et al., Effects of TiO2 nanoparticles and oleic acid surfactant on the rheological behavior of engine lubricant oil, Journal of Molecular Liquids, 268, 925-930, 2018.
61.I. Hansenne, US 6146649 A, Photobluing/whitening-resistant cosmetic/dermatological compositions comprising TiO2 pigments and deformable hollow particulates, 1999.
62.C. Chui, US 20080100900 A1, Light guide including optical scattering elements and a method of manufacture, 2011.
63.丁鹏, et al., CN 102634067 A, 光扩散剂、光分散材料及其制备方法, 2012.
64.W. Li, et al. Dielectric Properties and 3D Printing Fesibility of UV Curable Polymer Composites, in 2018 IEEE International Conference on High Voltage Engineering and Application (ICHVE), 2018.
65.M. L. Griffith, et al., Scattering of ultraviolet radiation in turbid suspensions. Journal of Applied Physics, 81(6), 2538-2546, 1997.
66.Z. Chen, et al., Curing characteristics of ceramic stereolithography for an aqueous-based silica suspension. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 224(4), 641-651, 2010.
67.M. G. Neumann, et al., Molar extinction coefficients and the photon absorption efficiency of dental photoinitiators and light curing units, Journal of Dentistry, 33(6), 525-532, 2005.
68.M. G. Neumann, et al., The initiating radical yields and the efficiency of polymerization for various dental photoinitiators excited by different light curing units, Dental Materials, 22(6), 576-584, 2006.
69.V. P. Thompson, et al., Dental Resins with Reduced Shrinkage During Hardening, Journal of Dental Research, 58(5), 1522-1532, 1979.
70.D. Karalekas, et al., Study of shrinkage strains in a stereolithography cured acrylic photopolymer resin, Journal of Materials Processing Technology, 136(1), 146-150, 2003.
71.S. C. Ligon, et al., Strategies to Reduce Oxygen Inhibition in Photoinduced Polymerization, Chemical Reviews, 114(1), 557-589, 2014.
72.S. C. Ligon-Auer, et al., Toughening of photo-curable polymer networks: a review, Polymer Chemistry, 7(2), 257-286, 2016.
73.B. Steyrer, et al., Visible Light Photoinitiator for 3D-Printing of Tough Methacrylate Resins, Materials (Basel), 10(12), 2017.