跳到主要內容

臺灣博碩士論文加值系統

(44.192.22.242) 您好!臺灣時間:2021/07/31 10:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:余政軒
研究生(外文):Cheng-Hsuan Yu
論文名稱:棕櫚殼生質廢棄物以田口法優化製備活性碳用於二氧化碳吸附
論文名稱(外文):Taguchi Optimization Approach for Producing Activated Carbon from Palm Kernel Shell for Carbon Dioxide Adsorption
指導教授:黃朝偉黃朝偉引用關係
指導教授(外文):Chao-Wei Huang
口試委員:黃朝偉陳冠邦李約亨林怡君
口試委員(外文):Chao-Wei HuangGuan-Bang ChenYueh-Heng LiYi-Jun Lin
口試日期:2020-07-07
學位類別:碩士
校院名稱:國立高雄科技大學
系所名稱:化學工程與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:92
中文關鍵詞:活性碳
外文關鍵詞:Activated carbon
相關次數:
  • 被引用被引用:0
  • 點閱點閱:51
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究之目的在於利用生質廢棄物(棕櫚殼)以化學活化的方式,使用管狀高溫爐製備出之活性碳可用於吸附二氧化碳,並使用田口法的正規直交表優化其參數,以較少實驗的組數來評估實驗參數對於活性碳特性的影響。在本實驗中期望透過比表面積、二氧化碳吸附量及重量損失這三項目標特性得到最佳值,在田口法設計為L9(34)其中四個變因分別為:溫度、鹼度、氣體流率及停滯時間,分別設定三個水準,溫度為600、700、800oC,KOH對棕櫚殼之重量比為1:1、1:1.5、1:2,氮氣流率為150、250、350 mL/min,停滯時間為60、90、120 min;透過BET檢測獲得活性碳之比表面積可藉由S/N ratio的望大特性來找出影響最大的因子,結果得出影響性大小依序是溫度、鹼度、氮氣流率,最後則是停滯時間;重量損失則依S/N ratio的望小特性找出影響最大的變因,影響性大小排序依序為鹼度、停滯時間、氮氣流率、溫度;優化所製備而得的活性碳將進行二氧化碳吸附測試,以期未來可應用於捕捉溫室氣體,降低溫室效應。
The purpose of this study is to use biomass waste (palm kernel shell, PKS) via chemical activation in a tubular high-temperature furnace to prepare the activated carbon for adsorbing carbon dioxide. In order to optimize the parameters of chemical activiation, the regular L9 (34) orthogonal table of the Taguchi method was used to design the experiments. The effects of experimental parameters on the characteristics of activated carbon, including specific surface area, carbon dioxide adsorption, and weight loss, were analyzed. In a L9 orthogonal table, there are four variables, such as temperature, alkalinity, gas flow rate, and stagnation time. They were respectively set at three levels. The temperature was set at 600, 700, 800oC; the weight ratio of KOH to palm husk was set at 1:1, 1:1.5, 1:2; the nitrogen flow rate was set at 150, 250, 350 mL/min; the stagnation time was 60, 90, 120 min. The specific surface area of activated carbon obtained by BET analysis showed the highest regression to the carbon dioxide adsorption. According to the largest characteristic of the S/N ratio analysis, it was found that the influence on the specific surface area ranks by temperature, alkalinity, nitrogen flow rate, and the stagnation time. Moreover, the weight loss was based on the small characteristic of the S/N ratio. To find the most influential factors, the order of influence was alkalinity, stagnation time, nitrogen flow rate, and temperature. To sum up, the activated carbon prepared by Taguchi optimization will be useful for carbon dioxide adsorption. With a view to the future applications, such activated carbon can be employed in capturing greenhouse gases and reducing the greenhouse effect.
目 錄

摘 要 I
ABSTRACT II
誌 謝 III
目 錄 IV
表 目 錄(Table) VII
圖 目 錄(Figure) VIII
數學方程式 X
化學方程式 X
第一章 緒論 1
1-1 研究動機 1
1-2 研究目的及內容 2
第二章 文獻回顧 3
2-1 活性碳 3
2-2 活性碳吸附原理 3
2-2.1 吸附定義 3
2-2.2 單層吸附及多層吸附 5
2-3 活性碳製備方式 8
2-4 棕櫚殼近似分析及元素分析參考資料 8
2-5 生質能及活性碳溫度區間名詞解釋 9
2-6 物理活化 10
2-7 化學活化 11
2-8 化學活化與物理活化比較 12
2-9 田口法介紹 13
2-9.1 田口法公式 14
2-10 BET理論 14
2-11 BJH理論 15
2-12 BET吸附曲線 15
2-13 BET使用限制與使用氣體 16
2-13.1 氮氣作為吸附氣體的限制 16
2-14 微孔對於活性碳影響 17
2-14.1 微孔填充及毛細凝聚 17
2-15 微孔測定方法介紹 18
2-15.1 NLDFT(非局部密度泛涵理論) 18
2-15.2 MP method 18
2-15.3 Horvath-Kawazoe(HK) 18
第三章 研究方法與步驟 20
3-1 實驗藥品及設備 20
3-1.1 實驗藥品及器材 20
3-1.2 實驗儀器 20
3-2 製備方法 21
3-2.1 前驅物處理 21
3-3 田口法直交表建立 21
3-3.1 實驗規劃 21
3-4 分析儀器 23
3-5 TGA設定程序 24
第四章 分析原理 25
4-1 熱重分析儀(Thermogravimetric analyzer, TGA) 25
4-2 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 25
4-2.1 背向散射電子(Backscattered Electron, BSE) 25
4-3 比表面積分析儀(Specific Surface Area and Porosimetry Analyzer) 25
4-4 元素分析儀(Elemental analyzer) 25
4-5 X光繞射儀(X-ray Diffraction, XRD) 26
第五章 實驗結果 27
5-1 EA分析結果 27
5-2 TGA結果(Raw PKS) 27
5-3 BET 等溫吸附曲線結果 29
5-4 孔徑分佈 30
5-5 SEM結果 34
5-6 BET S/N ratio計算結果 39
5-7 Weight loss S/N ratio計算結果 41
5-8 與商業活性碳D比較 43
5-9 TGA二氧化碳吸附結果(附錄A) 43
5-10 二氧化碳吸附量與比表面積關係探討 (25oC,T1-T10) 47
5-10.1 二氧化碳吸附量與比表面積關係探討(比表面積大於500) 50
5-11 二氧化碳吸附量與孔體積探討(25oC,小於2nm,T1-T10) 53
5-11.1 二氧化碳吸附量與孔體積的影響(25oC,比表面積大於500組數中孔徑低於2nm之孔體積,T1-T10) 53
5-11.2 二氧化碳吸附量與孔體積的影響(25oC,小於0.87nm,T1-T10) 55
5-11.3 二氧化碳吸附量與孔體積的影響(25oC <0.7nm,T1-T10) 56
5-12 不同溫度下二氧化碳吸附量關係性 57
5-12.1 BET對二氧化碳吸附在不同溫度下的關係性 57
5-12.2 二氧化碳吸附量對2奈米以下的孔體積在不同溫度下的關係性 58
5-13 XRD分析結果 59
5-14 比較文獻中二氧化碳吸附量 60
第六章 結論 62
附錄 68
附錄A 田口法二氧化碳吸附量(T2-T10) 68
附錄B MP-Method Pore volume(<2nm T1-T10) with CO2 capacity) 77
附錄C 氮氣吸脫附曲線(T1-T9) 78
附錄D 活性碳製備 79
個人小傳 80
全文完 80


1.行政院農委會(2017), 農業廢棄物產量歷年表。上網日期 : 2020年8月20日。檢自 : https://www.coa.gov.tw/ws.php?id=8.
2.羅時芳與吳周燕, 臺灣生質燃料產業趨勢分析. 經濟前瞻, 2017(174): p. 112-117.
3.Olivier, J.G., J.A. Peters, and G. Janssens-Maenhout, Trends in global CO2 emissions 2012 report. 2012.
4.Phys.org, Global carbon dioxide emissions projected to rise after three stable years. 13 November 2017.
5.Nordhaus, W.D., To slow or not to slow: the economics of the greenhouse effect. The economic journal, 1991. 101(407): p. 920-937.
6.Gibbins, J. and H. Chalmers, Carbon capture and storage. Energy Policy, 2008. 36(12): p. 4317-4322.
7.Pires, J.C.M., et al., Recent developments on carbon capture and storage: An overview. Chemical Engineering Research and Design, 2011. 89(9): p. 1446-1460.
8.CLEARAIR TASK FORCE.
9.Gupta, T., Historical Production and Use of Carbon Materials: The Activated Carbon, in Carbon: The Black, the Gray and the Transparent. 2018, Springer International Publishing: Cham. p. 47-70.
10.Metcalf, W.V., Van der Waals Equation - A Supplementary Paper. The Journal of Physical Chemistry, 1915. 20(3): p. 177-187.
11.Zeegers-Huyskens, T. and P. Huyskens, Intermolecular Forces, in Intermolecular Forces: An Introduction to Modern Methods and Results, P.L. Huyskens, W.A.P. Luck, and T. Zeegers-Huyskens, Editors. 1991, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 1-30.
12.Langmuir Adsorption - an overview | ScienceDirect Topics.
13.Trunschke, . November 2013.
14.張家驥與張慶源, 臺灣生質能技術發展協會(2018), 永續性清潔能源-生質燃料。上網日期 : 2020年8月20日。檢自 : http://www.twbiomass.org.tw/News/NewDetail?sn=28.
15.Rashidi, N.A. and S. Yusup, Potential of palm kernel shell as activated carbon precursors through single stage activation technique for carbon dioxide adsorption. Journal of Cleaner Production, 2017. 168: p. 474-486.
16.廢棄物能源利用(May. 18, 2012)。廢棄物能源應用。上網日期 : 2020年8月20日。檢自 : https://myweb.ntut.edu.tw/~yhchen1/2012biofuel-1.pdf.
17.Martin Junginger, P.B.E., Utrecht and University, . 27 Oct 2016
18.Brownsort, P.A., Biomass pyrolysis processes: performance parameters and their influence on biochar system benefits. 2009.
19.Partner, A.P.B.B.U.F.T., .
20.Klein, A., Gasification: an alternative process for energy recovery and disposal of municipal solid wastes. Columbia University, 2002.
21.I.D.Mall, D., D.o.C.E. Roorkee, and N.N.P.o.T.E. Learning), . 12-NOVEMBER-2013: p. Course: Chemical Technology (Organic).
22.Brown, R.C., I.S. University, and I. Ames, .
23.蕭弘毅、張玉芳、鄭淑蕙, 高性能活性碳纖維的技術發展及應用. 工業材料雜誌313 碳纖維材料與應用技術專題, 2013/01: p. 100-110.
24.Amosa, M.K., et al., Comparative and optimization studies of adsorptive strengths of activated carbons produced from steam- and CO2-activation for BPOME treatment. Advances in Environmental Biology, 2014. 8(3 SPEC. ISSUE): p. 603-612.
25.Rafsanjani, H.H., H. Kamandari, and H. Najjarzadeh, Study on pore and surface development of activated carbon produced from Iranian coal in a rotary kiln reactor. Iranian Journal of Chemical Engineering, 2013. 10(3).
26.Fałtynowicz, H., J. Kaczmarczyk, and M. Kułazyński, Preparation and characterization of activated carbons from biomass material - Giant knotweed (Reynoutria sachalinensis). Open Chemistry, 2015. 13(1): p. 1150-1156.
27.Rashidi, N.A. and S. Yusup, A review on recent technological advancement in the activated carbon production from oil palm wastes. Chemical Engineering Journal, 2017. 314: p. 277-290.
28.Foo, K.Y. and B.H. Hameed, Microwave-assisted preparation of oil palm fiber activated carbon for methylene blue adsorption. Chemical Engineering Journal, 2011. 166(2): p. 792-795.
29.Foo, K. and B. Hameed, Preparation of oil palm (Elaeis) empty fruit bunch activated carbon by microwave-assisted KOH activation for the adsorption of methylene blue. Desalination, 2011. 275(1-3): p. 302-305.
30.Foo, K.Y. and B.H. Hameed, Adsorption characteristics of industrial solid waste derived activated carbon prepared by microwave heating for methylene blue. Fuel Processing Technology, 2012. 99: p. 103-109.
31.Foo, K.Y. and B.H. Hameed, Dynamic adsorption behavior of methylene blue onto oil palm shell granular activated carbon prepared by microwave heating. Chemical Engineering Journal, 2012. 203: p. 81-87.
32.Ello, A.S., et al., Development of microporous carbons for CO2 capture by KOH activation of African palm shells. Journal of CO2 Utilization, 2013. 2: p. 35-38.
33.Auta, M., Fixed Bed Adsorption Studies of Rhodamine B Dye using Oil Palm Empty Fruits Bunch Activated Carbon. Journal of Engineering Research and Studies, 2012. 3(3): p. 3-6.
34.Abdul Khalil, H.P.S., et al., Activated carbon from various agricultural wastes by chemical activation with KOH: Preparation and characterization. Journal of Biobased Materials and Bioenergy, 2013. 7(6): p. 708-714.
35.Hesas, R.H., et al., Microwave-assisted production of activated carbons from oil palm shell in the presence of CO2 or N2 for CO2 adsorption. Journal of Industrial and Engineering Chemistry, 2015. 24: p. 196-205.
36.Ruiz, H., et al., Production and characterization of activated carbon from oil-palm shell for carboxylic acid adsorption. Oriental Journal of Chemistry, 2015. 31(2): p. 753-762.
37.Yacob, A.R., et al., Microwave induced carbon from waste palm kernel shell activated by phosphoric acid. Int. J. Eng. Technol., 2013. 5(2): p. 214-217.
38.Nwabanne, J.T. and P.K. Igbokwe, Adsorption performance of packed bed column for the removal of lead (ii) using oil palm fi bre. International Journal of Applied Science and Technology, 2012. 2(5): p. 106-115.
39.Kundu, A., et al., Taguchi optimization approach for production of activated carbon from phosphoric acid impregnated palm kernel shell by microwave heating. Journal of Cleaner Production, 2015. 105: p. 420-427.
40.Evbuomwan, B.O., A.M. Agbede, and M.M. Atuka, A comparative study of the physico-chemical properties of activated carbon from oil palm waste (kernel shell and fibre). Science and Engineering Investigations, 2013. 2: p. 75-79.
41.Hesas, R.H., et al., J. Anal. Appl. Pyrolysis, 2013. 4: p. 176-184.
42.Hesas, R.H., et al., Preparation of granular activated carbon from oil palm shell by microwave-induced chemical activation: Optimisation using surface response methodology. Chemical Engineering Research and Design, 2013. 91(12): p. 2447-2456.
43.Zaini, M.A.A., et al., Microwave-induced zinc chloride activated palm kernel shell for dye removal. Sains Malaysiana, 2014. 43(9): p. 1421-1428.
44.Wirasnita, R., et al., Removal of bisphenol A from aqueous solution by activated carbon derived from oil palm empty fruit bunch. Water, Air, & Soil Pollution, 2014. 225(10): p. 2148.
45.Hussaro, K., Preparation of activated carbon from palm oil shell by chemical activation with Na2Co3 and ZnCl2 as imprenated agents for H2S adsorption. American Journal of Environmental Sciences, 2014. 10(4): p. 336-346.
46.Tsui, K.-L., AN OVERVIEW OF TAGUCHI METHOD AND NEWLY DEVELOPED STATISTICAL METHODS FOR ROBUST DESIGN. IIE Transactions, 1992. 24(5): p. 44-57.
47.Ambroz, F., et al., Evaluation of the BET Theory for the Characterization of Meso and Microporous MOFs. Small Methods, 2018. 2(11): p. 1800173.
48.S. LOWELL, J.E.S., MARTIN A. THOMAS and MATTHIAS THOMMES, Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density. 2004.
49.Lozano-Castelló, D., D. Cazorla-Amorós, and A. Linares-Solano, Usefulness of CO2 adsorption at 273 K for the characterization of porous carbons. Carbon, 2004. 42(7): p. 1233-1242.
50.Huang, G.-g., et al., Activated carbons prepared by the KOH activation of a hydrochar from garlic peel and their CO2 adsorption performance. New Carbon Materials, 2019. 34(3): p. 247-257.
51.Serafin, J., et al., Highly microporous activated carbons from biomass for CO2 capture and effective micropores at different conditions. Journal of CO2 Utilization, 2017. 18: p. 73-79.
52.Yin, G., et al., The role of different properties of activated carbon in CO2 adsorption. Chemical Engineering Journal, 2013. 230: p. 133-140.
53.Song, T., et al., Effect of micropore and mesopore structure on CO2 adsorption by activated carbons from biomass. New Carbon Materials, 2015. 30(2): p. 156-166.
54.Li, M. and R. Xiao, Preparation of a dual Pore Structure Activated Carbon from Rice Husk Char as an Adsorbent for CO2 Capture. Fuel Processing Technology, 2019. 186: p. 35-39.
55.Neimark, A.V. and P.I. Ravikovitch, Capillary condensation in MMS and pore structure characterization. Microporous and Mesoporous Materials, 2001. 44-45: p. 697-707.
56.Lastoskie, C.M., A Modified Horvath-Kawazoe Method for Micropore Size Analysis, in Studies in Surface Science and Catalysis, K.K. Unger, G. Kreysa, and J.P. Baselt, Editors. 2000, Elsevier. p. 475-484.
57.Erdman, N., D.C. Bell, and R. Reichelt, Scanning Electron Microscopy, in Springer Handbook of Microscopy, P.W. Hawkes and J.C.H. Spence, Editors. 2019, Springer International Publishing: Cham. p. 229-318.
58.林麗娟, X 光繞射原理及其應用. 工業材料86期X光材料分析技術與應用專題, 1994: p. 100-109.
59.Guizani, C., F.J. Escudero Sanz, and S. Salvador, The nature of the deposited carbon at methane cracking over a nickel loaded wood-char. Comptes Rendus Chimie, 2016. 19(4): p. 423-432.
60.Wang, S., H. Nam, and H. Nam, Preparation of activated carbon from peanut shell with KOH activation and its application for H2S adsorption in confined space. Journal of Environmental Chemical Engineering, 2020. 8(2): p. 103683.
61.Xie, Z., et al., Production of Biologically Activated Carbon from Orange Peel and Landfill Leachate Subsequent Treatment Technology. Journal of Chemistry, 2014. 2014: p. 491912.
62.Shamsuddin, M.S., N.R.N. Yusoff, and M.A. Sulaiman, Synthesis and Characterization of Activated Carbon Produced from Kenaf Core Fiber Using H3PO4 Activation. Procedia Chemistry, 2016. 19: p. 558-565.
63.Hu, X., et al., CO2-Filling Capacity and Selectivity of Carbon Nanopores: Synthesis, Texture, and Pore-Size Distribution from Quenched-Solid Density Functional Theory (QSDFT). Environmental Science & Technology, 2011. 45(16): p. 7068-7074.
64.Rashidi, N.A., Y. Suzana, and L. Hon Loong, Kinetic Studies on Carbon Dioxide Capture using Activated Carbon. Vol. 35. 2013. 361-366.
65.Plaza, M.G., et al., Developing almond shell-derived activated carbons as CO2 adsorbents. Separation and Purification Technology, 2010. 71(1): p. 102-106.
66.Plaza, M.G., et al., Valorisation of spent coffee grounds as CO2 adsorbents for postcombustion capture applications. Applied Energy, 2012. 99: p. 272-279.

電子全文 電子全文(網際網路公開日期:20250824)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文