跳到主要內容

臺灣博碩士論文加值系統

(3.236.50.201) 您好!臺灣時間:2021/08/05 20:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林韋彤
研究生(外文):LIN, WEI-TONG
論文名稱:製備銀摻雜的氧化鋅光觸媒降解有機染料之研究
論文名稱(外文):Preparation of silver-doped zinc oxide photocatalyst for degradation of organic dyes
指導教授:高立衡高立衡引用關係
指導教授(外文):KAO, LI-HENG
口試委員:張健桂楊鎮遠
口試委員(外文):JHANG,JIAN-GUEIYANG,JHEN-YUAN
口試日期:2020-07-30
學位類別:碩士
校院名稱:國立高雄科技大學
系所名稱:化學工程與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:83
中文關鍵詞:氧化鋅光觸媒沉澱法銀摻雜
外文關鍵詞:ZnOphotocatalystprecipitationAg doping
相關次數:
  • 被引用被引用:0
  • 點閱點閱:63
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用氫氧化鈉(NaOH)、硝酸鋅(Zn(NO3)2),以化學沉澱法合成氧化鋅(ZnO)光觸媒,為增加其光降解效率摻雜銀(Ag)進行改質合成銀摻雜之氧化鋅(Ag/ZnO)光觸媒。
ZnO和Ag/ZnO光觸媒,皆分別利用掃描式電子顯微鏡(SEM)、X-ray繞射儀(XRD)、能量散佈分析儀器(EDS)、可見光吸收光譜儀(UV-VIS)、光激發螢光光譜儀(PL)等儀器對材料做特性分析,並將ZnO及Ag/ZnO光觸媒置於剛果紅、亞甲基藍及若丹明B染料中,以紫外光照射進行光降解反應,藉由紫外-可見光吸收光譜儀(UV-VIS)來探討光催化活性。
實驗結果顯示,本實驗製備之Ag/ZnO光觸媒降解剛果紅、亞甲基藍及若丹明B等染料效率皆可達到90%以上,並且與未摻雜銀之ZnO光觸媒相比有著更佳的降解速率,顯示其對分解有機染料有極佳的效果。

In this study, sodium hydroxide (NaOH) and zinc nitrate (Zn(NO3)2) were used to synthesize zinc oxide (ZnO) photocatalyst by chemical precipitation. In order to increase its photodegradation efficiency, zinc oxide (ZnO) photocatalyst was doped silver (Ag) to synthesize Ag doped ZnO(Ag/ZnO) photocatalyst.
ZnO and Ag/ZnO photocatalysts were analyzed by Scanning Electron Microscope(SEM), X-ray diffraction(XRD), Energy Dispersive Spectrometer(EDS), Ultraviolet-Visible absorption spectrometer(UV-VIS), Fluorescence spectrometer (PL). The photocatalytic activity of synthesized products(ZnO and Ag/ZnO) was evaluated by measuring the degradation of methylene blue(MB) and rhodamine B(RhB) under UV irradiation. The change of MB and RhB concentration was measured by Ultraviolet-Visible absorption spectrometer (UV-VIS).
The results show that the Ag/ZnO photocatalyst has better degradation then ZnO photocatalyst, Therefore it has an excellent effect on the decomposition of organic dyes.

目 錄
摘要 i
Abstract ii
誌謝 iii
目錄 iv
表目錄 viii
圖目錄 ix

第一章 緒論 1
第二章 基本原理與文獻回顧 3
2.1 光觸媒簡介 3
2.2 光觸媒之光催化反應機制 5
2.3 Ag/ZnO光觸媒反應機制 6
2.4 氧化鋅(ZnO)光觸媒 7
2.5 氧化鋅(ZnO)光觸媒製備方法 10
2.5.1 水熱法(Hydrothermal method) 10
2.5.2 溶膠-凝膠法(sol-gel) 11
2.5.3 化學沉澱法(Precipitation) 12
2.5.4 噴霧熱解法(spray pyrolysis) 13
第三章 實驗設備與方法 15
3.1 實驗藥品與儀器 15
3.1.1 實驗藥品 15
3.1.2 實驗儀器 16
3.2 實驗流程 18
3.2.1 實驗架構 18
3.2.2 氧化鋅(ZnO)光觸媒的製備 19
3.2.3 奈米銀溶液的製備 20
3.2.4 Ag/ZnO光觸媒的製備 21
3.2.5 染料配製與檢量線製作 22
3.3 光觸媒活性測試 23
3.3.1 剛果紅簡介 23
3.3.2 亞甲基藍簡介 24
3.3.3 若丹明B簡介 26
3.3.4 光催化實驗步驟與裝置 28
3.3.5 光催化反應的動力模式 29
3.4 實驗儀器簡介 31
3.4.1 X-ray繞射儀 (XRD) 31
3.4.2 場發射掃描式電子顯微鏡 (SEM) 33
3.4.3 紫外光/可見光吸收光譜儀 (UV-Vis) 35
3.4.4 比爾-藍博定律 (Beer-Lambert Law) 37
3.4.5 光激發螢光光譜分析(PL) 38
第四章 結果與討論 40
4.1 光觸媒組成特性分析 40
4.1.1 Ag/ZnO光觸媒銀含量粗估 40
4.1.2 奈米銀溶液之轉換機制 41
4.1.3 表面形貌結構SEM/EDS分析 42
4.1.4 XRD分析 48
4.1.5 UV-Vis吸收光譜分析 50
4.1.6 光激發螢光光譜分析 52
4.2 光降解效能測試 53
4.2.1 染料溶液之檢量線 53
4.2.2 UV光降解剛果紅實驗 57
4.2.3 UV光降解亞甲基藍實驗 59
4.2.4 UV光降解若丹明B實驗 61
4.3 Ag/ZnO光觸媒效能穩定性測試 63
第五章 結論 66
第六章 未來工作 67
參考文獻 68

[1] 陳雅玲,奈米科技在化學上的應用-奈米光觸媒,
[2] Sini Kuriakose, Vandana Choudhary, Biswarup Satpati et al., Enhanced photocatalytic activity of Ag-ZnO hybrid plasmonic nanostructures prepared by a facile wet chemical methods, Beilstein J. Nanotechnol, 5(2014)639.
[3] 光觸媒-拾埃生技有限公司。From http://decaangstrom.com/tw/product/4
(Jun. 29, 2019)
[4] Jinrun Liu, Jiadong Li, Feng Wei et al.,Ag−ZnO Submicrometer Rod Arrays for High-Efficiency Photocatalytic Degradation of Congo Red and Disinfection, ACS Sustainable Chem. Eng, 7(2019)11258.
[5] Morkoc H., et al., A comprehensive review of ZnO materials and devices, Journal of Applied Physics, 98(2005)4.
[6] Claus Franz Klingshirn, Bruno K. Meyer, Andreas Waag et al.,Zinc Oxide: From Fundamental Properties Towards Novel Applications. Springer, (2011).
[7] Ayesha Naveed Ul Haq, Akhtar Nadhman, Ikram Ullah et al.,Synthesis Approaches of Zinc Oxide Nanoparticles:The Dilemma of Ecotoxicity.”Mohamed Bououdina, (2017).
[8] Z. L. Wang, X. Y. Kong, Y. Ding et al.,Funct. Mater., 14(2004)935
[9] J. Y. Lao, J.G. Wen, Z.F.Ren, Nano Lett, 11(2002)1287.
[10] J. Chen, H. Deng, M. Wei, Mater.Sci.Eng.B,163(2009)157.
[11] A. M. Tonejc, A. Turkovic, M Trojko, A Tonejc, observation of nanocrystalline phases in TiO2 obtained by the sol-gel method, Mater. Lett., 31(1997)127.
[12] D. Vorkapic, T. Matsoukas, Effect of Temperature and a Alcohols in the preparation of Titania Nanoparticles from Alkoxides, J. Am. Ceram. Soc., 81(1998)2815.
[13] M. Kamal Akhtar, Sotiris E. Pratsinis, Sebastian V. R. Mastrangelo, Dopants in Vapor Phase Synthesis of Titania Powders, 120(1992)3408.
[14] National Center for Biotechnology Information. PubChem Database. Congo red, CID=11313, from
https://pubchem.ncbi.nlm.nih.gov/compound/Congo-red.
[15] Enhanced removal of toxic Congo red dye using multi walled carbon nanotubes: Kinetic, equilibrium studies and its comparison with other adsorbents - Scientific Figure on ResearchGate. Available from
https://www.researchgate.net/figure/Chemical-structure-and-UV-vis-spectra-of-Congo-red-dye_fig1_282329424.
[16] National Center for Biotechnology Information. PubChem Database. Methylene blue, CID=6099, from
https://pubchem.ncbi.nlm.nih.gov/compound/Methylene-blue.
[17] Laser-Induced Silver Nanoparticles on Titanium Oxide for Photocatalytic Degradation of Methylene Blue - Scientific Figure on ResearchGate. from https://www.researchgate.net/figure/UV-Vis-spectrum-of-methylene-blue-solution-with-maximum-absorption-at-668-nm_fig6_41089542.
[18] 吳政隆(2010)。多孔性Cd(Ⅱ)/TiO2 光觸媒製備及分解偶氮染料之研究。南台科技大學化學工程與材料工程研究所碩士論文,未出版,台南市。
[19] H. Nagahama, T. Kashiki, N. Nwe, et al. Preparation of biodegradable
50chitin/gelatin membranes with GlcNAc for tissue engineering applications.
Carbohyd. Polym, 73(1988)456.
[20] 林智仁,場發射式掃描式電子顯微鏡,工業材料雜誌86期,1994。
[21] Jukka Raty et al., UV-visible Reflection Spectroscopy of Liquids, Springer Verlag,(2004).
[22] Han Zhao, Xiang Liu, Yuming Dong et al., A novel visible-light-driven ternary Ag@Ag2O/BiOCl Z-scheme photocatalyst with enhanced removal efficiency of RhB, New Journal of Chemistry, (2019).
[23] National Center for Biotechnology Information. PubChem Database. Rhodamine B, CID=6694, from https://pubchem.ncbi.nlm.nih.gov/compound/6694
[24] Detection of Rhodamine B levels in distilled water based on displacement sensor using fiber coupler and concave mirror - Scientific Figure on Research Gate. Availablefrom https://www.researchgate.net/figure/Absorption-spectrum-of-Rhodamine-B-solution-at-concentration-of-1-ppm_fig2_312068117.
[25] S. Brett Walker and Jennifer A. Lewis, Reactive Silver Inks for Patterning High-Conductivity Features at Mild Temperatures, Journal Of The American Society, 134(2012)1419.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top