(3.237.178.91) 您好!臺灣時間:2021/03/04 08:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:何很有
研究生(外文):HO, HEN-YO
論文名稱:利用蛋白水解液改善殺菌液蛋之起泡特性和穩定性
論文名稱(外文):The improvement of the foaming characteristics and stability of sterilized liquid egg with egg white hydrolysate
指導教授:侯智耀
指導教授(外文):HOU, CHIH-YAO
口試委員:吳明昌謝昌衛邱致穎林家民
口試委員(外文):WU, MING-CHANGHSIEH, CHANG-WEICIOU, JHIN-YINGLIN, CHIA-MIN
口試日期:2020-07-15
學位類別:碩士
校院名稱:國立高雄科技大學
系所名稱:水產食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:100
中文關鍵詞:液蛋蛋白水解液起泡特性與穩定性
外文關鍵詞:liquid eggegg white hydrolysatefoaming characteristics and stability
相關次數:
  • 被引用被引用:0
  • 點閱點閱:39
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
液蛋是指液態之非帶殼鮮蛋之加工蛋類產品,為整顆新鮮雞蛋去殼後經分離及過濾等處理程序製備而成,且依其後續殺菌或未殺菌可再細分為殺菌液蛋及未殺菌液蛋兩種。依據最新公告的法規—液蛋衛生標準及產品標示規定,液蛋加工業者必須使用蛋殼完整無裂痕,或者蛋殼雖受損但蛋殼膜完整而無內容物洩漏,無外在汙垢黏附之原料蛋,且成品殺菌液蛋不得檢出沙門氏桿菌。然而,殺菌液蛋製程中的「巴斯德低溫殺菌」,雖可殺滅蛋品中沙門氏桿菌而減少食安風險,但經巴斯德低溫殺菌後,液蛋中少量蛋白質會發生變性進而破壞其加工特性,如蛋白打發之起泡特性及蛋白泡沫之穩定性等,致使其無法滿足烘焙業者之加工需求,所以仍需混入新鮮雞蛋或選用未殺菌液蛋來進行烘焙產品之製作,使殺菌液蛋發展受到相當大的限制。為改善此問題,本研究利用水解技術,將蛋白經酵素水解成小分子,並以巴斯德低溫殺菌去除可能存在的病原菌,製備成蛋白水解液,再將其回填至殺菌液蛋白中,評估其對殺菌液蛋白的起泡特性及穩定性之改善狀況並進一步應用於蛋糕配方之烘焙測試中評估其添加後之實際應用效果。
將蛋白水解液以不同比例(1%、 %、5%)添加至殺菌液蛋白中,再使用攪拌機快速打發至最大體積後評估不同組別間起泡特性及穩定性之表現情形。結果顯示,蛋白水解液添加組相較於殺菌液蛋白組,明顯有效改善殺菌液蛋白的起泡特性及穩定性。其中,起泡特性以添加濃度5%蛋白水解液之效果最佳,而穩定性部分則以添加濃度1%的蛋白水解液效果最佳。此外,利用色差儀分析添加蛋白水解液後是否會對產品外觀色澤造成影響。結果顯示,添加蛋白水解液後雖會致使其色澤亮度降低,但從產品外觀上則無法以肉眼明顯辨識差異。最後,在蛋糕產品烘焙測試以及官能品評之評估部分,殺菌液蛋白添加蛋白水解液後,所製作之烘焙蛋糕產品相較於殺菌液蛋白組有明顯的改善,且成品的成果接近未殺菌液蛋白組。綜合上述結果顯示,本研究所建立之蛋白水解液添加於殺菌液蛋白之方法,是能有效改善巴斯德低溫殺菌對殺菌液蛋白所造成之不良影響,雖然以添加濃度5%的起泡特性最佳,但隨著時間增加其穩定性會隨之下降,為考量該方法能在烘焙產業上被有效的利用,且考量成本問題以及蛋白泡沫之穩定性,本研究擬以建議添加濃度1%蛋白水解液為最適之操作條件,將有助於改善殺菌液蛋白之烘焙使用的侷限性。

Liquid egg refers to the processed egg products of liquid fresh egg without shell, which are prepared by separating and filtering the whole fresh egg after shelling. Based on sterilization or not sterilization, it can be divided into sterilized liquid egg and not sterilized liquid egg. According to the latest regulations, “liquid egg hygiene standards and product labeling regulations”: liquid egg processors must use the egg with intact and no crack on eggshells, or damaged eggshells but intact eggshell membranes with no content leakage, no external dirt adhesion on raw materials, and Salmonella cannot be detected in the final sterilized liquid egg. Even though "low temperature pasteurization" in the process of sterilizing liquid egg can kill Salmonella in egg and reduce food safety risks, but after low temperature pasteurization, a small amount of protein in liquid egg will be denatured and deteriorate the processing characteristics, such as the foaming characteristics of egg white and the stability of egg white foam. As a result, it does not satisfy the processing requirements of the bakery, so it is still necessary to mix fresh egg or using not sterilized liquid egg for the production of baked products, which also limits the development of sterilized liquid egg. In order to improve this problem, this research used hydrolysis technology to hydrolyze the egg white into small molecules by enzymes, pasteurize to remove the pathogenic bacteria that may exist, prepare a egg white hydrolysate, and then backfill it into the sterilized liquid egg white. To evaluate the improvement of the foaming characteristics and stability of the sterilized liquid egg white, and further apply it to the cake formula test to evaluate the actual application effect after addition.
Add egg white hydrolysate to the sterilized liquid egg white in different proportions (1%, 3%, 5%), use a blender to quickly dispense to the maximum volume, and evaluate the performance of foaming characteristics and stability between different groups. The results showed that the egg white hydrolysate added group was significantly more effective than the sterilized egg white group in improving the foaming characteristics and stability of the sterilized egg white. In addition, the foaming characteristics is the best effect of adding 5% egg white hydrolysate; however, the stability is the best effect of adding 1% egg white hydrolysate. Furthermore, use a colorimeter to analyze whether adding egg white hydrolysate will affect the appearance of the product. The results show that although the addition of egg white hydrolysate will reduce the brightness of the color, the difference in product appearance cannot be clearly recognized by the human eye. Lastly, in the evaluation of testing baked cake products and organoleptic, the baked cake product made by adding egg white hydrolysate to the sterilized liquid egg white was significantly improved than the sterilized liquid egg white group, and the finished product is close to the not sterilized liquid egg white group. The above results show that the method of adding egg white hydrolysate to sterilization liquid egg white established by this research can effectively improve the adverse effects of low temperature pasteurization on sterilized liquid egg white. Even if the best foaming characteristics with the addition of 5% egg white hydrolysate, its stability will decrease with time. To consider that this method can be effectively used in the baking industry, as well as the cost issues and the stability of egg white foam. This research proposes to add 1% of egg white hydrolysate as the most suitable operating conditions, which will help to improve the limitations of the use sterilized liquid egg white in baking.

中文摘要 I
英文摘要 III
誌謝 VI
目錄 IX
表目錄 XIII
圖目錄 XV
壹、前言 1
貳、文獻回顧 4
2.1雞蛋簡介 4
2.1.1雞蛋發展趨勢 9
2.1.2雞蛋中沙門氏桿菌 13
2.2液蛋簡介 18
2.2.1液蛋發展趨勢 21
2.2.2液蛋近年來食安事件 26
2.2.3液蛋之食安管理改善計畫 29
2.2.4液蛋之食品相關法規條文 33
2.2.5液蛋製程中巴斯德低溫殺菌 36
2.2.5.1巴斯德低溫殺菌條件 37
2.2.5.2巴斯德低溫殺菌之影響 41
2.3蛋白水解液簡介 42
2.3.1蛋白水解液之應用 42
參、材料與方法 46
3.1實驗材料 46
3.1.1樣品材料 46
3.1.2儀器設備 46
3.1.3化學試藥 47
3.2實驗架構 49
3.3實驗方法 50
3.3.1蛋白水解液製備 50
3.3.1.1蛋白質含量分析(Protein content analysis) 50
3.3.1.2水解度分析(Analysis of degree of hydrolysis) 51
3.3.2樣品製備 52
3.3.2.1電位值分析(Zeta potential analysis) 53
3.3.2.2表面張力分析(Surface tension analysis) 53
3.3.2.3黏度分析(Viscosity analysis) 54
3.3.2.4色澤分析(Color analysis) 54
3.3.3泡沫樣品製備 54
3.3.3.1失水重分析(Drainage analysis) 55
3.3.3.2物理性分析(Physical analysis) 55
3.3.3.3微觀結構分析(Microstructure analysis) 56
3.3.4烘焙蛋糕樣品製備 56
3.3.4.1色澤分析(Color analysis) 57
3.3.4.2微觀結構分析(Microstructure analysis) 57
3.3.4.3橫切面高度分析(Cross-sectional height analysis) 58
3.3.4.4官能品評分析(Organoleptic analysis) 58
肆、結果與討論 60
4.1蛋白水解液之分析(Analysis of egg white hydrolysate) 60
4.1.1蛋白質含量 60
4.1.2水解度 61
4.2穩定性能力之分析(Analysis of stability) 63
4.3起泡特性能力之分析(Analysis of foaming characteristics) 72
4.4官能品評分析(Organoleptic analysis) 80
4.5色澤分析(Color analysis) 82
伍、結論 86
參考文獻 87
作者簡介 99


1.楊悠娟,2016,飲食文化與化學,蛋的化學(上)第12期
2.小校報,2018,廚房中不能缺少它,香港教育城。
3.中華民國養雞協會,1998,臺灣養雞產業的展望,中華民國養雞協會會刊,三月份,第107期
4.家禽世界,1998,加入世界貿易組織(WTO)後臺灣家禽產業之展望,家禽世界現代畜殖合訂本,第五期,第41-44頁。
5.王韻秋,1992,臺灣雞蛋業之過去與未來,農產運銷季刊,第92期,第18-23頁。
6.郭思吟,2008,蛋殼廢棄物吸附水溶液中重金屬之能力,東海大學畜產與生物科技學系,臺灣碩博士論文圖書館。
7.行政院農業委員會,統計資料,2018,畜禽副產品之雞蛋產量。
8.行政院農業委員會,統計資料,2002,農政與農情。
9.衛生福利部食品藥物管理署,統計資料,2019,臺灣地區歷年食品中毒案件資料統計。
10.臺南蛋品股份有限公司,起士公爵製圖,2018,殺菌液蛋加工流程。
11.張勝善,1986,蛋品加工學,華香園出版社。
12.陳晉蒼,1998,如何解決雞蛋過剩之探討,食品資訊第152期。
13.張炳揚、陳景榮、徐華強、方若彥,1983,液蛋之常溫保存及其加工利用,食品工業發展研究所。
14.勤億蛋品科技股份有限公司,產品介紹,2012,新鮮屋包裝及塑膠袋包裝之液蛋。
15.上豐蛋品有限公司,產品介紹,2018,塑膠瓶包裝之液蛋。
16.臺南蛋品股份有限公司,產品介紹,2018,塑膠桶包裝之液蛋。
17.丁崇德、黃萬傳,2000,臺灣家禽加工品之產銷,雜糧與畜產第324期。
18.金利興機械有限公司,產品介紹,2003,自動化剝殼分蛋機(產能60顆/分)。
19.笙輝機械有限公司,產品介紹,2010,自動化剝殼分蛋機(產能180顆/分)。
20.丹麥賽諾沃(SANOVO)公司,產品介紹,2018,自動化剝殼分蛋機(產能530顆/分)。
21.陳香婷,2001,臺灣液蛋需求之分析,東海大學食品科學系,臺灣碩博士論文圖書館。
22.臺灣好食材-好食報,食安事件,2014,雞蛋殘留抗生物素事件。
23.食力foodNEXT-即時新聞,食安事件,2017,毒雞蛋事件、萇記泰安黑心液蛋事件。
24.台美檢驗科技有限公司-焦點訊息,食安事件,2017,芬普尼事件。
25.食力foodNEXT-即時新聞,食安事件,2018,元山黑心液蛋事件。
26.行政院食品安全辦公室,蛋有所歸(規),2018,雞蛋與液蛋產業食安管理改善計畫。
27.衛生福利部食品藥物管理署,食品法規條文查詢,2019,液蛋衛生標準、液蛋產品標示規定。
28.財團法人中華穀類食品工業技術研究所,殺菌液蛋之推廣,2018,殺菌液蛋應用於西式糕點之研究。
29.衛生福利部食品藥物管理署,液蛋殺菌條件,2019,液蛋製品製造業者良好衛生作業指引。
30.李時珍,1596,文淵閣四庫全書_子部醫家類_七七四卷,本草綱目第369-371頁。
31.勝大食品股份有限公司,產品介紹,2020,殺菌液蛋白。
32.Ministry of Food and Drug Safety (MFDS). 2016. “Processing standards and ingredient specifications for livestock products. ” Ministry of Food and Drug Safety (MFDS), Notification No. 2015–94.
33.Douglas Baldwin. 2010. “Poultry and Egg.” In Sous Vide for the Home Cook.
34.Ai, M., Tang, T., Zhou, L., Ling, Z., Guo, S., & Jiang, A. (2019). Effects of different proteases on the emulsifying capacity, rheological and structure characteristics of preserved egg white hydrolysate. Food Hydrocolloids. https://doi.org/10.1016/j.foodhyd.2018.09.023
35.Baldwin, R. E. (1986). Functional Properties of Eggs in Foods. In Egg Science and Technology. https://doi.org/10.1007/978-1-349-09142-3_16
36.Chalamaiah, M., Esparza, Y., Temelli, F., & Wu, J. (2017). Physicochemical and functional properties of livetins fraction from hen egg yolk. Food Bioscience. https://doi.org/10.1016/j.fbio.2017.04.002
37.Chousalkar, K. K., Sexton, M., McWhorter, A., Hewson, K., Martin, G., Shadbolt, C., & Goldsmith, P. (2017). Salmonella typhimurium in the Australian egg industry: Multidisciplinary approach to addressing the public health challenge and future directions. Critical Reviews in Food Science and Nutrition. https://doi.org/10.1080/10408398.2015.1113928
38.Clemente, A. (2000). Enzymatic protein hydrolysate in human nutrition. Trends in Food Science and Technology. https://doi.org/10.1016/S0924-2244(01)00007-3
39.Cunningham, F. E. (1986). Egg-Product Pasteurization. In Egg Science and Technology. https://doi.org/10.1007/978-1-349-09142-3_12
40.Dabestani, M., & Yeganehzad, S. (2019). Effect of Persian gum and Xanthan gum on foaming properties and stability of pasteurized fresh egg white foam. Food Hydrocolloids. https://doi.org/10.1016/j.foodhyd.2018.08.030
41.Daugelaite, D., Guillermic, R. M., Scanlon, M. G., & Page, J. H. (2016). Quantifying liquid drainage in egg-white sucrose foams by resistivity measurements. Colloids and Surfaces A: Physicochemical and Engineering Aspects. https://doi.org/10.1016/j.colsurfa.2015.10.053
42.F., D. S., Romanoff, A., & Romanoff, A. L. (1949). The Avian Egg. Bird-Banding. https://doi.org/10.2307/4510092
43.Firoze Akhtar, T., Ahmed, R., Elgaddafi, R., Shah, S., & Amani, M. (2018). Rheological behavior of aqueous foams at high pressure. Journal of Petroleum Science and Engineering. https://doi.org/10.1016/j.petrol.2017.12.050
44.Garcia-Gonzalez, L., Geeraerd, A. H., Elst, K., VanGinneken, L., VanImpe, J. F., & Devlieghere, F. (2009). Inactivation of naturally occurring microorganisms in liquid whole egg using high pressure carbon dioxide processing as an alternative to heat pasteurization. Journal of Supercritical Fluids. https://doi.org/10.1016/j.supflu.2009.06.020
45.Geveke, D. J., Bigley, A. B. W., & Brunkhorst, C. D. (2017). Pasteurization of shell eggs using radio frequency heating. Journal of Food Engineering. https://doi.org/10.1016/j.jfoodeng.2016.08.009
46.Giacintucci, V., DiMattia, C., Sacchetti, G., Neri, L., & Pittia, P. (2016). Role of olive oil phenolics in physical properties and stability of mayonnaise-like emulsions. Food Chemistry. https://doi.org/10.1016/j.foodchem.2016.06.095
47.Gurtler, J. B., Marks, H. M., Bailey, R. B., Juneja, V., & Jones, D. R. (2013). Kinetics model comparison for the inactivation of salmonella serotypes enteritidis and oranienburg in 10% salted liquid whole egg. Foodborne Pathogens and Disease. https://doi.org/10.1089/fpd.2012.1366
48.Gurtler, J. B., Marks, H. M., Jones, D. R., Bailey, R. R., & Bauer, N. E. (2011). Modeling the thermal inactivation kinetics of heat-resistant salmonella enteritidis and oranienburg in 10 percent salted liquid egg yolk. Journal of Food Protection. https://doi.org/10.4315/0362-028X.JFP-10-384
49.Hamid‐SamimI, M., Swartzel, K. R., & BALL, H. R. (1984). Flow Behavior of Liquid Whole Egg During Thermal Treatments. Journal of Food Science. https://doi.org/10.1111/j.1365-2621.1984.tb13689.x
50.Hegg, P. ‐o, & Löfqvist, B. (1974). The protective effect of small amounts of anionic detergents on the thermal aggregation of crude ovalbumin. Journal of Food Science. https://doi.org/10.1111/j.1365-2621.1974.tb07362.x
51.HERALD, T. J., & SMITH, D. M. (1989). Functional Properties and Composition of Liquid Whole Egg Proteins as Influenced by Pasteurization and Frozen Storage. Poultry Science. https://doi.org/10.3382/ps.0681461
52.Hill, C., & Eastoe, J. (2017). Foams: From nature to industry. In Advances in Colloid and Interface Science. https://doi.org/10.1016/j.cis.2017.05.013
53.Horimoto, Y., & Lim, L. T. (2017). Effects of different proteases on iron absorption property of egg white hydrolysate. Food Research International. https://doi.org/10.1016/j.foodres.2017.02.024
54.Hu, F. B., Stampfer, M. J., Rimm, E. B., Manson, J. A. E., Ascherio, A., Colditz, G. A., Rosner, B. A., Spiegelman, D., Speizer, F. E., Sacks, F. M., Hennekens, C. H., & Willett, W. C. (1999). A prospective study of egg consumption and risk of cardiovascular disease in men and women. Journal of the American Medical Association. https://doi.org/10.1001/jama.281.15.1387
55.Huang, T., Tu, Z. cai, Wang, H., Shangguan, X., Zhang, L., Niu, P., & Sha, X. mei. (2017). Promotion of foam properties of egg white protein by subcritical water pre-treatment and fish scales gelatin. Colloids and Surfaces A: Physicochemical and Engineering Aspects. https://doi.org/10.1016/j.colsurfa.2016.10.013
56.Janssen, H. J. L. (1971). Influence of pasteurisation, freezing and storage on properties of egg products made from eggs stored for 7 and for 28 days. Journal of the Science of Food and Agriculture. https://doi.org/10.1002/jsfa.2740220915
57.Krauss, R. M., Deckelbaum, R. J., Ernst, N., Fisher, E., Howard, B.V., Knopp, R. H., Kotchen, T., Lichtenstein, A. H., McGill, H. C., Pearson, T. A., Prewitt, T. E., Stone, N. J., VanHorn, L., & Weinberg, R. (1996). Dietary guidelines for healthy American adults: A statement for health professionals from the Nutrition Committee, American Heart Association. In Circulation. https://doi.org/10.1161/01.CIR.94.7.1795
58.Lahl, W. J., & Braun, S. D. (1994). Enzymatic production of protein hydrolysate for food use. Food Technology.
59.Lechevalier, V., Guérin-Dubiard, C., Anton, M., Beaumal, V., David Briand, E., Gillard, A., LeGouar, Y., Musikaphun, N., Tanguy, G., Pasco, M., Dupont, D., & Nau, F. (2017). Pasteurisation of liquid whole egg: Optimal heat treatments in relation to its functional, nutritional and allergenic properties. Journal of Food Engineering. https://doi.org/10.1016/j.jfoodeng.2016.10.007
60.Li, J., Wang, C., Li, X., Su, Y., Yang, Y., & Yu, X. (2018). Effects of pH and NaCl on the physicochemical and interfacial properties of egg white/yolk. Food Bioscience, 23, 115–120. https://doi.org/https://doi.org/10.1016/j.fbio.2017.12.004
61.Li, X., Li, J., Chang, C., Wang, C., Zhang, M., Su, Y., & Yang, Y. (2019). Foaming characterization of fresh egg white proteins as a function of different proportions of egg yolk fractions. Food Hydrocolloids. https://doi.org/10.1016/j.foodhyd.2018.12.014
62.Li, X., Yang, Y., Murray, B. S., & Sarkar, A. (2020). Combination of egg white protein and microgels to stabilize foams: Impact of processing treatments. Journal of Food Engineering. https://doi.org/10.1016/j.jfoodeng.2019.109860
63.Li, Y., Zhou, C., Zhou, X., & Li, L. (2013). Egg consumption and risk of cardiovascular diseases and diabetes: A meta-analysis. Atherosclerosis. https://doi.org/10.1016/j.atherosclerosis.2013.04.003
64.Liao, W., Jahandideh, F., Fan, H., Son, M., & Wu, J. (2018). Egg Protein-Derived Bioactive Peptides: Preparation, Efficacy, and Absorption. In Advances in Food and Nutrition Research. https://doi.org/10.1016/bs.afnr.2018.02.001
65.Lomakina, K., & Míková, K. (2006). A study of the factors affecting the foaming properties of egg white - A review. In Czech Journal of Food Sciences. https://doi.org/10.17221/3305-cjfs
66.Miguel, M., & Aleixandre, A. (2006). Antihypertensive Peptides Derived from Egg Proteins. The Journal of Nutrition. https://doi.org/10.1093/jn/136.6.1457
67.Monfort, S., Mañas, P., Condón, S., Raso, J., & Álvarez, I. (2012). Physicochemical and functional properties of liquid whole egg treated by the application of Pulsed Electric Fields followed by heat in the presence of triethyl citrate. Food Research International. https://doi.org/10.1016/j.foodres.2012.04.015
68.Noorlaila, A., Hasanah, H. N., Asmeda, R., & Yusoff, A. (2020). The effects of xanthan gum and hydroxypropylmethylcellulose on physical properties of sponge cakes. Journal of the Saudi Society of Agricultural Sciences. https://doi.org/10.1016/j.jssas.2018.08.001
69.Pande, V.V., Gole, V. C., McWhorter, A. R., Abraham, S., & Chousalkar, K. K. (2015). Antimicrobial resistance of non-typhoidal Salmonella isolates from egg layer flocks and egg shells. International Journal of Food Microbiology. https://doi.org/10.1016/j.ijfoodmicro.2015.02.025
70.Pärn, T., Dahl, V., Lienemann, T., Perevosčikovs, J., DeJong, B., Raska, K., Rimhanen-Finne, R., Huusko, S., Salmenlinna, S., Halkilahti, J., Ollgren, J., Pesola, A. K., Feher, A., Lucenko, I., Korotinska, R., Kantsone, I., Marcenkova, T., Storozenko, J., Aleksiene, G., …Muehlen, M. (2017). Multi-country outbreak of Salmonella enteritidis infection linked to the international ice hockey tournament. Epidemiology and Infection. https://doi.org/10.1017/S0950268817001212
71.Raikos, V., Campbell, L., & Euston, S. R. (2007). Effects of sucrose and sodium chloride on foaming properties of egg white proteins. Food Research International. https://doi.org/10.1016/j.foodres.2006.10.008
72.Robertson, W. R., & Muriana, P. M. (2004). Reduction of Salmonella by two commercial egg white pasteurization methods. Journal of Food Protection. https://doi.org/10.4315/0362-028X-67.6.1177
73.Seuss-Baum, I., Nau, F., & Guérin-Dubiard, C. (2011). The nutritional quality of eggs. In Improving the Safety and Quality of Eggs and Egg Products. https://doi.org/10.1533/9780857093929.3.201
74.Udenigwe, C. C., & Aluko, R. E. (2012). Food protein-derived bioactive peptides: Production, processing, and potential health benefits. In Journal of Food Science. https://doi.org/10.1111/j.1750-3841.2011.02455.x
75.Wal, J. S. V., Gupta, A., Khosla, P., & Dhurandhar, N.V. (2008). Egg breakfast enhances weight loss. International Journal of Obesity. https://doi.org/10.1038/ijo.2008.130
76.Wouters, A. G. B., Rombouts, I., Fierens, E., Brijs, K., Blecker, C., Delcour, J. A., & Murray, B. S. (2018). Foaming and air-water interfacial characteristics of solutions containing both gluten hydrolysate and egg white protein. Food Hydrocolloids. https://doi.org/10.1016/j.foodhyd.2017.09.033
77.Xue, Z., Worthen, A., Qajar, A., Robert, I., Bryant, S. L., Huh, C., Prodanović, M., & Johnston, K. P. (2016). Viscosity and stability of ultra-high internal phase CO2-in-water foams stabilized with surfactants and nanoparticles with or without polyelectrolytes. Journal of Colloid and Interface Science. https://doi.org/10.1016/j.jcis.2015.08.031
78.Zhu, J., Zhang, D., Zhou, X., Cui, Y., Jiao, S., & Shi, X. (2019). Development of a pasteurization method based on radio frequency heating to ensure microbiological safety of liquid egg. Food Control. https://doi.org/10.1016/j.foodcont.2019.107035
79.Zhuang, P., Jiao, J., Wu, F., Mao, L., & Zhang, Y. (2020). Egg and egg-sourced cholesterol consumption in relation to mortality: Findings from population-based nationwide cohort. Clinical Nutrition. https://doi.org/10.1016/j.clnu.2020.03.019
80.Zmudziński, D., Ptaszek, P., Kruk, J., Kaczmarczyk, K., Roznowski, W., Berski, W., Ptaszek, A., & Grzesik, M. (2014). The role of hydrocolloids in mechanical properties of fresh foams based on egg white proteins. Journal of Food Engineering. https://doi.org/10.1016/j.jfoodeng.2013.08.020




電子全文 電子全文(網際網路公開日期:20250806)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔