跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2025/01/13 16:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳信宏
研究生(外文):CHING, SING-HONG
論文名稱:探討以乳酸菌發酵後的飼料內菌相及對白蝦成長及免疫影響
論文名稱(外文):The effects on microbial community and the immune responses of Litopenaeus vannamei aquaculture with Lactobacteria-fermented feeds
指導教授:洪明昌
指導教授(外文):HONG, MING-CHANG
口試委員:洪明昌邱國勛劉獻岳吳宗孟
口試委員(外文):HONG, MING-CHANGCIOU, GUO-SYUNLIOU, SIAN-YUEWU, ZONG-MENG
口試日期:2020-06-12
學位類別:碩士
校院名稱:國立高雄科技大學
系所名稱:水產養殖系
學門:農業科學學門
學類:漁業學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:71
中文關鍵詞:白蝦乳酸菌發酵飼料菌相
外文關鍵詞:white shrimplactobacteriafermentationfeedsmicrobial community
相關次數:
  • 被引用被引用:0
  • 點閱點閱:544
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
水產養殖業為最具潛力的產業之一,能夠滿足動物蛋白的需求,為人類提供營養和糧食。但是,集約化養殖對魚類的壓力越來越大,導致傳染病並最終造成經濟損失。目前,抗生素是減少水產養殖疾病的流行工具,但它可能造成環境污染並產生耐藥細菌。最近,被稱為益生菌的有益微生物已被用作替代品之一。它們最初被用作牛和豬的動物飼料添加劑,作用包括抵抗病原微生物,與病原體競爭粘附位點和養分,以及促進宿主的免疫反應。這項研究著重在了解透過乳酸菌發酵對飼料內菌相的改變,及其對白蝦成長與免疫之影響。這項實驗設計了四種飼料,其中包括商業飼料(C),添加了乳酸菌的飼料(A)組,不添加乳酸菌發酵飼料(N)和乳酸菌介導發酵的飼料(F)。餵食六週後,結果顯示,A組平均最終體重為6.3±0.47 g,C組為3.9±0.38 g,部分發酵組的存活率為90%,空白組為60%。而飼料及乳酸菌粉內菌相的分析表明乳酸菌粉主要以三種乳酸桿菌屬所組成(Bifidobacterium 12%、Lactobacillus 8%及Enterococcus 78%),而在A組飼料中則以Enterococcus(56%)數為主,而N組飼料內則以Bacillus(66%)為主,確定了Enterococcus能在發酵過程中存活並成為優勢菌種,也證實了添加乳酸菌與否對飼料內菌相有著重要的關聯。
Aquaculture is developing into one of the most viable and promising indus-tries that offers the needs of animal protein, provide nutrition for humans and food security. However, intensive farming is increasing stresses to the fish, leading to infectious diseases and ultimately causes financial losses. Currently, the antibiotics are popular tools to reduce diseases in aquaculture, but it may cause environmental pollution and produce drug-resistant bacteria. Recently, beneficial microorganisms called probiotics have been applied as one of the alternatives. Due to they were originally used as animal feed additives in cat-tle and pigs, including antagonizing pathogenic microorganisms, competing with pathogens for adhesion sites and nutrients, and altering the host's im-mune response. Here, this study focused on microbial populations of fer-mented feed mediated by lactobacteria and as potent nutritional candidates for shrimp. Three feeds were designed with commercial feed(C), lactobacte-ria-added feeds (A) blank fermentation feeds (N), and lactobacteria-mediated fermentation feeds (F). After six weeks of feeding, evidence shows the group F resulted in 6.3 g of the final body weight averaged, 2.5 g in the group N , and the survival rate was 90% in the partially fermented group and 60% in the blank group. Future work will screen the microbial populations of lactobacte-ria-mediated fermentation feeds to evaluate the potential effects on microbial community. However, the analysis of the microbial populations in feed and Lactobacillus powder showed that there were mainly three kinds of Lactoba-cillus (Bifidobacterium 12%, Lactobacillus 8% and Enterococcus 78%), In the group A, the dominant strain is Enterococcus (56%), and the group N is Ba-cillus (66%), It is confirmed that Enterococcus can be stored in the fermenta-tion process and become the dominant strain. It is also confirmed that the ad-dition of lactobacillus has an important relationship with the microbial popu-lations in the feed.
摘要 i
致謝 iv
縮寫代號指引 v
目錄 vi
表目錄 viii
圖目錄 viii
第1章、 前言 1
1.1、 全球白蝦養殖現況 1
1.2、 白蝦養殖常見疾病 3
1.3、 蝦類免疫系統 4
1.4、 蝦類養殖疾病發生與治療 6
1.5、 乳酸菌在水產養殖的應用 7
1.6、 乳酸菌介導發酵 8
1.7、 研究目的 9
第2章、 材料方法 10
2.1、 實驗設計 10
2.2、 實驗動物及材料 10
2.2.1、 實驗動物 10
2.2.2、 乳酸菌粉 11
2.2.3、 商業飼料 11
2.2.4、 培養液配置 11
2.2.5、 乳酸菌液態生長曲線 12
2.2.6、 乳酸菌固態生長曲線 12
2.2.7、 發酵飼料製備 13
2.2.8、 飼料溶失率測定 13
2.2.9、 水質檢測 14
2.2.10、 成長指標 14
2.2.11、 肝胰腺及血細胞採樣 14
2.2.12、 總RNA提取及cDNA合成 15
2.2.13、 聚合酶連鎖反應 16
2.2.14、 飼料菌相分析 17
2.3、 統計分析 18
第3章、 結果 18
3.1、 水質數據 18
3.2、 成長指標及存活率 18
3.3、 免疫指標 19
3.3.1、 溶菌酶 19
3.3.2、 抗菌肽 20
3.3.3、 原酚氧化酵素 20
3.4、 生理指標 20
3.4.1、 血球總數 20
3.4.2、 肝體比 21
3.5、 飼料內菌相 21
3.5.1、 各組飼料16S RNA抽取 21
3.5.2、 物種豐富、多樣性比較 21
3.5.3、 樣品內細菌組成和群落結構 22
3.5.4、 細菌群落之間的關係 24
第4章、 討論 25
4.1、 發酵飼料對南美白對蝦成長及存活的影響 25
4.2、 發酵飼料對南美白對蝦免疫的影響 26
4.2.1、 溶菌酶 26
4.2.2、 抗菌肽 27
4.2.3、 原酚氧化酵素 28
4.3、 生理指標 28
4.4、 飼料內菌相 29
第5章、 結論與未來展望 31
第6章、 參考文獻 32



表目錄
表 一、商業乳酸菌粉標定成分 39
表 二、商業草蝦配合飼料標定成分 40
表 三、實驗使用引子 41
表 四、投餵發酵飼料後各組的成長指標 42
表 五、投餵發酵飼料後各組的生理指標 43
表 六、Alpha Diversity 指數 44
表 七、各組飼料的溶失率 45
圖目錄
圖 一、綜合乳酸菌生長曲線 46
圖 二、水質參數 47
圖 三、投餵發酵飼料後各組體重(FBW) 48
圖 四、投餵發酵飼料後各組體重增加率(WG) 49
圖 五、投餵發酵飼料後各組飼料轉換率(FCR) 50
圖 六、投餵發酵飼料後各組免疫基因電泳圖 51
圖 七、投餵發酵飼料後各組免疫基因相對表現量 52
圖 八、商業乳酸菌粉及發酵飼料經過16S RNA電泳圖 53
圖 九、OTU 的Venn 圖 54
圖 十、物種多樣性曲線 55
圖 十一、乳酸菌粉(LAB)物種注釋結果 56
圖 十二、無添加乳酸菌發酵飼料(BF)物種注釋結果 57
圖 十三、添加乳酸菌發酵飼料物種注釋結果 58
圖 十四、物種相對豐度 59
圖 十五、主座標分析 60
圖 十六、物種豐度聚類熱圖 61


Abreu, I.A. and Cabelli, D.E. (2010) Superoxide dismutases—a review of the metal-associated mechanistic variations. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1804(2), 263-274.
Adel, M., El-Sayed, A.-F.M., Yeganeh, S., Dadar, M. and Giri, S.S. (2017) Effect of potential probiotic Lactococcus lactis subsp. lactis on growth performance, intestinal microbiota, digestive enzyme activities, and disease resistance of Litopenaeus vannamei. Probiotics and antimicrobial proteins, 9(2), 150-156.
Askarian, F., Kousha, A., Salma, W. and Ringø, E. (2011) The effect of lactic acid bacteria administration on growth, digestive enzyme activity and gut microbiota in Persian sturgeon (Acipenser persicus) and beluga (Huso huso) fry. Aquaculture Nutrition, 17(5), 488-497.
Bachère, E., Gueguen, Y., Gonzalez, M., De Lorgeril, J., Garnier, J. and Romestand, B. (2004) Insights into the anti‐microbial defense of marine invertebrates: the penaeid shrimps and the oyster Crassostrea gigas. Immunological reviews, 198(1), 149-168.
Bartlett, T.C., Cuthbertson, B.J., Shepard, E.F., Chapman, R.W., Gross, P.S. and Warr, G.W. (2002) Crustins, homologues of an 11.5-kDa antibacterial peptide, from two species of penaeid shrimp, Litopenaeus vannamei and Litopenaeus setiferus. Marine Biotechnology, 4(3), 278-293.
Bata, Á. and Lásztity, R. (1999) Detoxification of mycotoxin-contaminated food and feed by microorganisms. Trends in Food Science & Technology, 10(6-7), 223-228.
Betancourt-Lozanoa, M.S.M.-C. (2014) Field and experimental evidence of Vibrio parahaemolyticus as the causative agent of 1 Acute Hepatopancreatic Necrosis Disease (AHPND) of cultured shrimp (Litopenaeus 2 vannamei) in northwestern Mexico 3.
Blesa, J., Soriano, J., Moltó, J. and Mañes, J. (2004) Concentration of ochratoxin A in wines from supermarkets and stores of Valencian Community (Spain). Journal of Chromatography A, 1054(1-2), 397-401.
Braïek, O.B., Ghomrassi, H., Cremonesi, P., Morandi, S., Fleury, Y., Le Chevalier, P., Hani, K., Hadj, O.B. and Ghrairi, T. (2017) Isolation and characterisation of an enterocin P-producing Enterococcus lactis strain from a fresh shrimp (Penaeus vannamei). Antonie van Leeuwenhoek, 110(6), 771-786.
Briggs, M. (2006) Cultured aquatic species information programme Penaeus vannamei (Boone, 1931). FAO fisheris and aquaculture department. http://www. fao. org/fishery/culture species/Lipopenaeus_vannamei/en.
Brock, J. (1997) Special topic review: Taura syndrome, a disease important to shrimp farms in the Americas. World journal of microbiology & biotechnology, 13(4), 415-418.
Burge, E.J., Madigan, D.J., Burnett, L.E. and Burnett, K.G. (2007) Lysozyme gene expression by hemocytes of Pacific white shrimp, Litopenaeus vannamei, after injection with Vibrio. Fish & shellfish immunology, 22(4), 327-339.
Campos, C.A., Rodríguez, Ó., Calo-Mata, P., Prado, M. and Barros-Velázquez, J. (2006) Preliminary characterization of bacteriocins from Lactococcus lactis, Enterococcus faecium and Enterococcus mundtii strains isolated from turbot (Psetta maxima). Food Research International, 39(3), 356-364.
Castex, M., Chim, L., Pham, D., Lemaire, P., Wabete, N., Nicolas, J.-L., Schmidely, P. and Mariojouls, C. (2008) Probiotic P. acidilactici application in shrimp Litopenaeus stylirostris culture subject to vibriosis in New Caledonia. Aquaculture, 275(1-4), 182-193.
Cerenius, L., Liu, H., Zhang, Y., Rimphanitchayakit, V., Tassanakajon, A., Andersson, M.G., Söderhäll, K. and Söderhäll, I. (2010) High sequence variability among hemocyte-specific Kazal-type proteinase inhibitors in decapod crustaceans. Developmental & Comparative Immunology, 34(1), 69-75.
Cerenius, L. and Söderhäll, K. (2004) The prophenoloxidase‐activating system in invertebrates. Immunological reviews, 198(1), 116-126.
Chiu, C.-H., Guu, Y.-K., Liu, C.-H., Pan, T.-M. and Cheng, W. (2007) Immune responses and gene expression in white shrimp, Litopenaeus vannamei, induced by Lactobacillus plantarum. Fish & Shellfish Immunology, 23(2), 364-377.
Coallier-Ascah, J. and Idziak, E. (1985) Interaction between Streptococcus lactis and Aspergillus flavus on production of aflatoxin. Appl. Environ. Microbiol., 49(1), 163-167.
Das, A., Nakhro, K., Chowdhury, S. and Kamilya, D. (2013) Effects of potential probiotic Bacillus amyloliquifaciens FPTB16 on systemic and cutaneous mucosal immune responses and disease resistance of catla (Catla catla). Fish & Shellfish Immunology, 35(5), 1547-1553.
De Schryver, P., Defoirdt, T. and Sorgeloos, P. (2014) Early mortality syndrome outbreaks: a microbial management issue in shrimp farming? PLoS Pathogens, 10(4).
Derrien, M. and van Hylckama Vlieg, J.E.T. (2015) Fate, activity, and impact of ingested bacteria within the human gut microbiota. Trends in Microbiology, 23(6), 354-366.
Du, Y., Zhou, S., Liu, M., Wang, B., Jiang, K., Fang, H. and Wang, L. (2019) Understanding the roles of surface proteins in regulation of Lactobacillus pentosus HC-2 to immune response and bacterial diversity in midgut of Litopenaeus vannamei. Fish & Shellfish Immunology, 86, 1194-1206.
El-Nezami, H., Kankaanpaa, P., Salminen, S. and Ahokas, J. (1998) Ability of dairy strains of lactic acid bacteria to bind a common food carcinogen, aflatoxin B1. Food and chemical toxicology, 36(4), 321-326.
Franz, C.M., Huch, M., Abriouel, H., Holzapfel, W. and Gálvez, A. (2011) Enterococci as probiotics and their implications in food safety. International journal of food microbiology, 151(2), 125-140.
González Pereyra, M.L., Di Giacomo, A.L., Lara, A.L., Martínez, M.P. and Cavaglieri, L. (2020) Aflatoxin-degrading Bacillus sp. strains degrade zearalenone and produce proteases, amylases and cellulases of agro-industrial interest. Toxicon, 180, 43-48.
Gupta, S., Dong, Y., Dijkwel, P.P., Mueller-Roeber, B. and Gechev, T.S. (2019) Genome-Wide Analysis of ROS Antioxidant Genes in Resurrection Species Suggest an Involvement of Distinct ROS Detoxification Systems during Desiccation. International journal of molecular sciences, 20(12), 3101.
Hamdan, A., El‐Sayed, A. and Mahmoud, M. (2016) Effects of a novel marine probiotic, Lactobacillus plantarum AH 78, on growth performance and immune response of Nile tilapia (Oreochromis niloticus). Journal of applied microbiology, 120(4), 1061-1073.
Hammond, J. and Smith, V. (2002) Lipopolysaccharide induces DNA-synthesis in a sub-population of hemocytes from the swimming crab, Liocarcinus depurator. Developmental & Comparative Immunology, 26(3), 227-236.
Holthuis, L.B. (1980) FAO species catalogue, Fao.
Hotel, A.C.P. and Cordoba, A. (2001) Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. Prevention, 5(1), 1-10.
Huang, J.-B., Wu, Y.-C. and Chi, S.-C. (2014) Dietary supplementation of Pediococcus pentosaceus enhances innate immunity, physiological health and resistance to Vibrio anguillarum in orange-spotted grouper (Epinephelus coioides). Fish & shellfish immunology, 39(2), 196-205.
Hutkins, R.W. (2008) Microbiology and technology of fermented foods, John Wiley & Sons.
Jelinek, C.F., Pohland, A.E. and Wood, G.E. (1989) Worldwide occurrence of mycotoxins in foods and feeds—an update. journal of the Association of Official Analytical Chemists, 72(2), 223-230.
Jollès, P. and Jollès, J. (1984) What's new in lysozyme research? Molecular and cellular biochemistry, 63(2), 165-189.
Karunasagar, I., Shivu, M., Girisha, S., Krohne, G. and Karunasagar, I. (2007) Biocontrol of pathogens in shrimp hatcheries using bacteriophages. Aquaculture, 268(1-4), 288-292.
Karuppanapandian, T., Moon, J.-C., Kim, C., Manoharan, K. and Kim, W. (2011) Reactive oxygen species in plants: their generation, signal transduction, and scavenging mechanisms. Australian Journal of Crop Science, 5(6), 709.
Kumar, S.R., Ahamed, V.I., Sarathi, M., Basha, A.N. and Hameed, A.S. (2008) Immunological responses of Penaeus monodon to DNA vaccine and its efficacy to protect shrimp against white spot syndrome virus (WSSV). Fish & shellfish immunology, 24(4), 467-478.
Lakshmi, B., Viswanath, B. and Sai Gopal, D. (2013) Probiotics as antiviral agents in shrimp aquaculture. Journal of pathogens, 2013.
Li, P., Burr, G.S., Gatlin III, D.M., Hume, M.E., Patnaik, S., Castille, F.L. and Lawrence, A.L. (2007) Dietary supplementation of short-chain fructooligosaccharides influences gastrointestinal microbiota composition and immunity characteristics of Pacific white shrimp, Litopenaeus vannamei, cultured in a recirculating system. The Journal of nutrition, 137(12), 2763-2768.
Lightner, D., LIGHTNER, D., Lightner, D., Lightner, D. and Lightner, D. (1996) A handbook of shrimp pathology and diagnostic procedures for diseases of cultured penaeid shrimp.
Lightner, D.V., Redman, R., Pantoja, C., Noble, B. and Tran, L. (2012) Early mortality syndrome affects shrimp in Asia. Global Aquaculture Advocate, 15(1), 40.
Longyant, S., Rukpratanporn, S., Chaivisuthangkura, P., Suksawad, P., Srisuk, C., Sithigorngul, W., Piyatiratitivorakul, S. and Sithigorngul, P. (2008) Identification of Vibrio spp. in vibriosis Penaeus vannamei using developed monoclonal antibodies. Journal of invertebrate pathology, 98(1), 63-68.
Lv, X., Du, J., Jie, Y., Zhang, B., Bai, F., Zhao, H. and Li, J. (2017) Purification and antibacterial mechanism of fish-borne bacteriocin and its application in shrimp (Penaeus vannamei) for inhibiting Vibrio parahaemolyticus. World Journal of Microbiology and Biotechnology, 33(8), 156.
Maeda, M., Shibata, A., Biswas, G., Korenaga, H., Kono, T., Itami, T. and Sakai, M. (2014) Isolation of lactic acid bacteria from kuruma shrimp (Marsupenaeus japonicus) intestine and assessment of immunomodulatory role of a selected strain as probiotic. Marine biotechnology, 16(2), 181-192.
Marco, M.L., Heeney, D., Binda, S., Cifelli, C.J., Cotter, P.D., Foligné, B., Gänzle, M., Kort, R., Pasin, G. and Pihlanto, A. (2017) Health benefits of fermented foods: microbiota and beyond. Current opinion in biotechnology, 44, 94-102.
Milićević, D.R., Škrinjar, M. and Baltić, T. (2010) Real and perceived risks for mycotoxin contamination in foods and feeds: challenges for food safety control. Toxins, 2(4), 572-592.
Mu, C., Zheng, P., Zhao, J., Wang, L., Qiu, L., Zhang, H., Gai, Y. and Song, L. (2011) A novel type III crustin (CrusEs2) identified from Chinese mitten crab Eriocheir sinensis. Fish & shellfish immunology, 31(1), 142-147.
Nappi, A. and Christensen, B. (2005) Melanogenesis and associated cytotoxic reactions: applications to insect innate immunity. Insect biochemistry and molecular biology, 35(5), 443-459.
Nguyen, T.L., Park, C.-I. and Kim, D.-H. (2017) Improved growth rate and disease resistance in olive flounder, Paralichthys olivaceus, by probiotic Lactococcus lactis WFLU12 isolated from wild marine fish. Aquaculture, 471, 113-120.
Nilsen, I.W., Øverbø, K., Sandsdalen, E., Sandaker, E., Sletten, K. and Myrnes, B. (1999) Protein purification and gene isolation of chlamysin, a cold‐active lysozyme‐like enzyme with antibacterial activity. FEBS letters, 464(3), 153-158.
Noordiana, N., Fatimah, A. and Mun, A. (2013) Antibacterial agents produced by lactic acid bacteria isolated from Threadfin Salmon and Grass Shrimp. International Food Research Journal, 20(1).
Papizadeh, M., Rohani, M., Nahrevanian, H., Javadi, A. and Pourshafie, M.R. (2017) Probiotic characters of Bifidobacterium and Lactobacillus are a result of the ongoing gene acquisition and genome minimization evolutionary trends. Microbial pathogenesis, 111, 118-131.
Pittet, A. (1995) Keeping the mycotoxins out: experience gathered by an international food company. Natural toxins, 3(4), 281-287.
Qi, Z., Zhang, X.-H., Boon, N. and Bossier, P. (2009) Probiotics in aquaculture of China—current state, problems and prospect. Aquaculture, 290(1-2), 15-21.
Qiu, L., Chen, M.-M., Wan, X.-Y., Li, C., Zhang, Q.-L., Wang, R.-Y., Cheng, D.-Y., Dong, X., Yang, B. and Wang, X.-H. (2017) Characterization of a new member of Iridoviridae, Shrimp hemocyte iridescent virus (SHIV), found in white leg shrimp (Litopenaeus vannamei). Scientific reports, 7(1), 1-13.
Saelao, S., Maneerat, S., Thongruck, K., Watthanasakphuban, N., Wiriyagulopas, S., Chobert, J.-M. and Haertlé, T. (2018) Reduction of tyramine accumulation in Thai fermented shrimp (kung-som) by nisin Z-producing Lactococcus lactis KTH0-1S as starter culture. Food Control, 90, 249-258.
Sha, Y., Wang, L., Liu, M., Jiang, K., Xin, F. and Wang, B. (2016) Effects of lactic acid bacteria and the corresponding supernatant on the survival, growth performance, immune response and disease resistance of Litopenaeus vannamei. Aquaculture, 452, 28-36.
Shetty, P.H. and Jespersen, L. (2006) Saccharomyces cerevisiae and lactic acid bacteria as potential mycotoxin decontaminating agents. Trends in Food Science & Technology, 17(2), 48-55.
Soto-Rodriguez, S.A., Gomez-Gil, B., Lozano-Olvera, R., Betancourt-Lozano, M. and Morales-Covarrubias, M.S. (2015) Field and experimental evidence of Vibrio parahaemolyticus as the causative agent of acute hepatopancreatic necrosis disease of cultured shrimp (Litopenaeus vannamei) in Northwestern Mexico. Appl. Environ. Microbiol., 81(5), 1689-1699.
Sritunyalucksana, K. and Söderhäll, K. (2000) The proPO and clotting system in crustaceans. Aquaculture, 191(1-3), 53-69.
Takahashi, K. (2010) Interaction between the intestinal immune system and commensal bacteria and its effect on the regulation of allergic reactions. Bioscience, biotechnology, and biochemistry, 1002261870-1002261870.
Tannock, G., Szylit, O., Duval, Y. and Raibaud, P. (1982) Colonization of tissue surfaces in the gastrointestinal tract of gnotobiotic animals by lactobacillus strains. Canadian journal of microbiology, 28(10), 1196-1198.
Tassanakajon, A., Somboonwiwat, K., Supungul, P. and Tang, S. (2013) Discovery of immune molecules and their crucial functions in shrimp immunity. Fish & shellfish immunology, 34(4), 954-967.
Tran, L., Nunan, L., Redman, R.M., Mohney, L.L., Pantoja, C.R., Fitzsimmons, K. and Lightner, D.V. (2013) Determination of the infectious nature of the agent of acute hepatopancreatic necrosis syndrome affecting penaeid shrimp. Diseases of aquatic organisms, 105(1), 45-55.
Wei, S., Huang, Y., Huang, X., Cai, J., Wei, J., Li, P., Ouyang, Z. and Qin, Q. (2014) Molecular cloning and characterization of a new G-type lysozyme gene (Ec-lysG) in orange-spotted grouper, Epinephelus coioides. Developmental & Comparative Immunology, 46(2), 401-412.
Zheng, X., Duan, Y., Dong, H. and Zhang, J. (2017) Effects of dietary Lactobacillus plantarum in different treatments on growth performance and immune gene expression of white shrimp Litopenaeus vannamei under normal condition and stress of acute low salinity. Fish & Shellfish Immunology, 62, 195-201.
Zhou, X.-x., Wang, Y.-b. and Li, W.-f. (2009) Effect of probiotic on larvae shrimp (Penaeus vannamei) based on water quality, survival rate and digestive enzyme activities. Aquaculture, 287(3-4), 349-353.
周帼萍 and 袁志明 (2007) 蜡状芽孢杆菌 (Bacillus cereus) 污染及其对食品安全的影响. 食品科学, 28(3), 357-361

電子全文 電子全文(網際網路公開日期:20250713)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊