(34.201.11.222) 您好!臺灣時間:2021/02/25 13:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:魏嘉頤
研究生(外文):WEI, CHIA-YI
論文名稱:雲林海域有色溶解性有機物質特性分析
論文名稱(外文):Characteristic analysis of Colored Dissolved Organic Matter in Waters around Yunlin County
指導教授:陳秋雲陳秋雲引用關係
指導教授(外文):CHEN, CHIU-YUN
口試委員:陳秋雲葉雨松雷漢杰
口試委員(外文):CHEN, CHIU-YUNYEH, YU-SUNGLUI, HON-KIT
口試日期:2020-07-29
學位類別:碩士
校院名稱:國立高雄科技大學
系所名稱:海洋環境工程系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:66
中文關鍵詞:有色溶解性有機物螢光光譜平行因子分析溶解性有機物
外文關鍵詞:Colored Dissolved Organic Matter (CDOM)Fluorescence spectroscopyParallel factor analysis (PARAFAC)Dissolved Organic Matter (DOM)
相關次數:
  • 被引用被引用:1
  • 點閱點閱:30
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
溶解性有機物質(Dissolved Organic Matter, DOM)種類豐富且複雜,攸關水中生態之穩定性,為環境科學研究重點。DOM中20-70%為有色溶解性有機物質(Colored Dissolved Organic Matter, CDOM),主要由類腐植質和類蛋白質兩大類所組成。近年來,運用高靈敏度之螢光激發發射矩陣光譜(Excitation Emission Matrix Spectroscopy, EEMs),配合平行因子分析(Parallel Factor Analysis, PARAFAC)模式分析,可以定性與半定量沿海及開放水域中CDOM之組成、來源及相對含量。本研究主要利用EEMs-PARAFAC模式,分析雲林海域的有色溶解性有機物質種類及來源。
本研究成果顯示雲林海域CDOM來源大部分屬於陸源輸入及生物活動產生為主,只是四季影響的程度不同。夏季受陸源淡水輸入較多,進而刺激了生物活動或浮游植物產生,使全海域的特徵值大於其他三季的最大特徵值;秋季為大部分受到陸源輸入和生物活動產生的影響,極少數測站受到陸源輸入影響;春季和冬季則受陸源輸入及生物活動產生的影響相近。四季主成分的最大特徵值大部分分佈於新虎尾溪口外和其以南一帶,表示該區域為雲林海域中CDOM的主要影響來源。CDOM種類與鹽度的相關性,以陸源輸入和生物活動產生的A類型與鹽度有較好的負相關性,而最無相關性為生物活動產生的T類型。

Dissolved Organic Matter (DOM) is a complex and the diverse sources, which is connected with the ecological stability in water become a main issue of environmental science. Technically, the DOM identified by its light spectrum is more efficient. This kind of DOM called the Colored Dissolved Organic Matter (CDOM) occupied 20-70% of total DOM amount. It can be separated into two major classes: humic-like substances and protein-like substances. Recently, the high-sensitivity fluorescence excitation emission matrix spectroscopy (EEMs) is used to obtain fluorescence intensities with different CDOM. Furthermore, the EEMs combined with a parallel factor analysis mode (PARAFAC) could qualitative and semi-quantitative explore the composition, sources and relative abundance of CDOM in different waters. In this study, we use this state-of-the-art tool to analysis the types and sources of CDOM in waters around Yunlin County.
The results of this study show that most of the sources of CDOM in waters around Yunlin County derived from the terrestrial sources and biological activities, but the influence of the four seasons is different. The summer is more terrestrial freshwater input, which stimulates biological activities or phytoplankton production, making the loadings value of the whole sea area greater than the maximum loadings value of the other three seasons. The fall is mostly derived from terrestrial sources and biological activities, and very few stations are derived from terrestrial sources. Spring and winter is similarly affected by terrestrial sources and biological activities. The maximum components of the four seasons are mostly distributed outside the Sinhuwei River and to the south, indicating that this area is the main source of CDOM in waters around Yunlin County. The correlation between CDOM types and salinity, the peak A produced by terrestrial sources and biological activities has a good negative correlation with salinity, and the least correlation is peak T produced by biological activities.

摘要
Abstract
致謝
目錄
表目錄
圖目錄
第一章 前言
1.1研究背景
1.2研究目的
第二章 研究方法
2.1研究架構
2.2設備與材料
2.3干擾及注意事項
2.4採樣方法
2.5前處理
2.6螢光光譜掃描
2.7 PARAFAC計算
2.8 SigmaPlot主成分圖繪製
2.9 Ocean Data View分佈圖繪製
第三章 結果與討論
3.1 平行因子分析結果驗證
3.2 CDOM特性來源
3.3 CDOM分佈與鹽度相關性
3.4 螢光指標
第四章 結論
參考文獻

英文文獻
Andrade-Eiroa, A., Canle, M., & Cerda, V. (2014). Environmental Applications of Excitation-Emission Spectrofluorimetry: An In-Depth Review II. Applied Spectroscopy Reviews, 48(2), 77-141.
Bai, Y., Su, R., & Shi, X. (2014). Assessing the dynamics of chromophoric dissolved organic matter in the southern Yellow Sea by excitation-emission matrix fluorescence and parallel factor analysis (EEM-PARAFAC). Continental Shelf Research, 88, 103-116.
Bro, R. (1997). PARAFAC. Tutorial and applications. Chemometrics and Intelligent Laboratory Systems, 38(2), 149-171.
Chen, D., Hu, Y. Y., Wang, L. Z., Zomaya, A. Y., & Li, X. L. (2017). H-PARAFAC: Hierarchical Parallel Factor Analysis of Multidimensional Big Data. Ieee Transactions on Parallel and Distributed Systems, 28(4), 1091-1104.
Coble, P. G., Green, S. A., Blough, N. V., & Gagosian, R. B. (1990). Characterization of dissolved organic matter in the Black Sea by fluorescence spectroscopy. Nature, 348(6300), 432-435.
Coble, P. G. (1996). Characterization of marine and terrestrial DOM in seawater using excitation emission matrix spectroscopy. Marine Chemistry, 51(4), 325-346.
Coble, P. G. (2007). Marine optical biogeochemistry: The chemistry of ocean color. Chemical Reviews, 107(2), 402-418.
Derrien, M., Yang, L. Y., & Hur, J. (2017). Lipid biomarkers and spectroscopic indices for identifying organic matter sources in aquatic environments: A review. Water Research, 112, 58-71.
Du, Y. X., Zhang, Y. Y., Chen, F. Z., Chang, Y. G., & Liu, Z. W. (2016). Photochemical reactivities of dissolved organic matter (DOM) in a sub-alpine lake revealed by EEM-PARAFAC: An insight into the fate of allochthonous DOM in alpine lakes affected by climate change. Science of the Total Environment, 568, 216-225.
Fondriest Environmental. (2017). Retrieved from https://www.fondriest.com/environmental-measurements/parameters/water-quality/chromophoric-dissolved-organic-matter/ (Aug. 8, 2020)
Gu, W. L., Huang, S. B., Lei, S., Yue, J., Su, Z. X., & Si, F. (2019). Quantity and quality variations of dissolved organic matter (DOM) in column leaching process from agricultural soil: Hydrochemical effects and DOM fractionation. Science of the Total Environment, 691, 407-416.
Hestir, E. L., Brando, V., Campbell, G., Dekker, A., & Malthus, T. (2015). The relationship between dissolved organic matter absorption and dissolved organic carbon in reservoirs along a temperate to tropical gradient. Remote Sensing of Environment, 156, 395-402.
Jaffé, R., Cawley, K. M., & Yamashita, Y. (2014). Applications of Excitation Emission Matrix Fluorescence with Parallel Factor Analysis (EEM-PARAFAC) in Assessing Environmental Dynamics of Natural Dissolved Organic Matter (DOM) in Aquatic Environments: A Review. In Advances in the Physicochemical Characterization of Dissolved Organic Matter: Impact on Natural and Engineered Systems (pp. 27-73).
Kowalczuk, P., Durako, M. J., Young, H., Kahn, A. E., Cooper, W. J., & Gonsior, M. (2009). Characterization of dissolved organic matter fluorescence in the South Atlantic Bight with use of PARAFAC model: Interannual variability. Marine Chemistry, 113(3-4), 182-196.
Kowalczuk, P., Tilstone, G. H., Zablocka, M., Rottgers, R., & Thomas, R. (2013). Composition of dissolved organic matter along an Atlantic Meridional Transect from fluorescence spectroscopy and Parallel Factor Analysis. Marine Chemistry, 157, 170-184.
Li, Y., Harir, M., Uhl, J., Kanawati, B., Lucio, M., Smirnov, K. S., Koch, B. P., Schmitt-Kopplin, P., & Hertkorn, N. (2017). How representative are dissolved organic matter (DOM) extracts? A comprehensive study of sorbent selectivity for DOM isolation. Water Research, 116, 316-323.
Liu, S. S., Feng, W. Y., Song, F. H., Li, T. T., Guo, W. J., Wang, B. B., Wang, H. Y., & Wu, F. C., (2019). Photodegradation of algae and macrophyte-derived dissolved organic matter: A multi-method assessment of DOM transformation. Limnologica, 77, 125683.
Murphy, K. R., Stedmon, C. A., Waite, T. D., & Ruiz, G. M. (2008). Distinguishing between terrestrial and autochthonous organic matter sources in marine environments using fluorescence spectroscopy. Marine Chemistry, 108(1-2), 40-58.
Murphy, K. R., Stedmon, C. A., Graeber D. and Bro, R. (2013). Fluorescence spectroscopy and multi-way techniques. PARAFAC. Analytical Methods, 5(23), 6557–6566.
Park, M., & Snyder, S. A. (2018). Sample handling and data processing for fluorescent excitation-emission matrix (EEM) of dissolved organic matter (DOM). Chemosphere, 193, 530-537.
Persson, T., & Wedborg, M. (2001). Multivariate evaluation of the fluorescence of aquatic organic matter. Analytica Chimica Acta, 434(2), 179-192.

Shutova, Y., Baker, A., Bridgeman, J., & Henderson, R. K. (2014). Spectroscopic characterisation of dissolved organic matter changes in drinking water treatment: From PARAFAC analysis to online monitoring wavelengths. Water Research, 54, 159-169.
Specchiulli, A., Cilenti, L., D'Adamo, R., Fabbrocini, A., Guo, W., Huang, L., Lugliè, A., Padedda, B. M., Scirocco, T., & Magni, P. (2018). Dissolved organic matter dynamics in Mediterranean lagoons: The relationship between DOC and CDOM. Marine Chemistry, 202, 37-48.
Stedmon, C. A., Markager, S., & Bro, R. (2003). Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy. Marine Chemistry, 82(3-4), 239-254.
Stedmon, C. A., & Markager, S. (2005). Tracing the production and degradation of autochthonous fractions of dissolved organic matter by fluorescence analysis. Limnology and Oceanography, 50(5), 1415-1426.
Stedmon, C. A., & Bro, R. (2008). Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial. Limnology and Oceanography-Methods, 6, 572-579.
Su, R. G., Bai, Y., Zhang, C. S., & Shi, X. Y. (2015). The assessment of the spatial and seasonal variability of chromophoric dissolved organic matter in the Southern Yellow Sea and the East China Sea. Marine Pollution Bulletin, 100(1), 523-533.
Yamashita, Y., Jaffe, R., Maie, N., & Tanoue, E. (2008). Assessing the dynamics of dissolved organic matter (DOM) in coastal environments by excitation emission matrix fluorescence and parallel factor analysis (EEM-PARAFAC). Limnology and Oceanography, 53(5), 1900-1908.

Yan, B., & Gao, X. L. (2019). Chromophoric dissolved organic matter in summer in a coastal mariculture region of northern Shandong Peninsula, North Yellow Sea. Continental Shelf Research, 176, 19-35.
Yang, L. Y., Hong, H. S., Guo, W. D., Chen, C. T. A., Pan, P. I., & Feng, C. C. (2012). Absorption and fluorescence of dissolved organic matter in submarine hydrothermal vents off NE Taiwan. Marine Chemistry, 128, 64-71.

中文文獻
行政院環境保護署(2019)。雲林離島式基礎工業區開發計畫施工期間環境監測108年第3季報告(期間為108年7月至108年9月)。
行政院環境保護署(2019)。重要河川污染指標概況,環境保護統計年報108年。
邱俊彥、賴文亮(2014)。三維螢光光譜與環境有機物的監測,科學發展,第493期,66-71。
施冠群(2020)。利用螢光光譜配合平行因子分析模式探討水中溶解有機物質,國立高雄科技大學海洋環境工程系碩士論文。
張文霖(2005)。主成分分析在SPSS中的操作應用,市場研究,31-34。
雲林縣環境保護局(2018)。107年度雲林縣北港溪及新虎尾溪關鍵測站總量管制暨水污染源稽查與水污費徵收查核計畫(編號:107-012)。
楊麗陽(2013)。拉曼散射扣除指令操作手冊,福州大學。
楊麗麗、王玉田、魯信琼(2013)。三維螢光光譜結合二階校正法用於石油類汙染物的識別和檢測,中國激光,第40卷(第6期),303-308。
賴屹民(2017)。初探機器學習演算法,碁峰出版。

電子全文 電子全文(網際網路公開日期:20250731)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔